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ABSTRACT
The system studied in this paper is a sensorless control of a permanent magnet synchronous
motor (PMSM). Its structure is based on the extended Kalman filter theory using only the
measurement of the motor current for the on-line estimation of speed and rotor position.
The speed-controlled PMSM is supplied by a voltage source PWM inverter. The PWM
generation is done by space vector modulation. The motor voltages necessary for the
Kalman algorithm are calculated with consideration of the non-linearity of the inverter.
Sophisticated control rules such as Kalman filtering in real time require a very fast signal
processor specially adapted to perform complex mathematical calculations. As digital signal
processors have become cheaper and their performance greater, it has become possible to
use them as a cost-effective solution. The filter design and the real-time implementation
issues of a sensorless control using a TMS320C31 DSP for the main control are presented.
The I/O subsystem and the PWM generation are based on a TMS320P14 working as a
slave-DSP. Finally, an evaluation of the experimental results is presented.

1. INTRODUCTION

With the introduction of permanent magnets with a high flux density as well as a high
coercivity in the late eighties, synchronous motors with permanent magnets became an
attractive alternative for application in high performance variable speed drives.
Significant advantages arise from the simplification in construction, the reduction in
losses and the improvement in efficiency. One of the most active areas of control
development during recent years involving PMSM has been the evolution of new
techniques for eliminating the position and speed sensor. Elimination of the shaft-
mounted sensor is required in many applications since this device is often one of the
most expensive and fragile components in the entire drive system. The system studied in



this paper is a sensorless control of a PMSM based on the extended Kalman filter theory
using only the measurements of motor current and DC-bus voltage for the estimation of
speed and rotor position. Figure 1 shows the block diagram of the entire control system.
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Figure 1: Block diagram of the entire control system.

The PWM generation implemented in the slave processor is based on space vector
modulation. The inverter used is a modified standard VSI-PWM inverter with IGBTs.
The PWM switching signals are fed directly from the slave processor to the inverter
using a high performance optical link, allowing to keep the inverter and drive several
meters from the PC with the control board.

2. SYSTEM MODEL

The system considered is a permanent magnet synchronous motor (PMSM) having
permanent magnets mounted on the rotor. The resulting back-EMF voltage induced in
each stator phase winding during rotation can be modeled quite accurately as a
sinusoidal waveform. A block diagram of the speed and position estimator is shown in
figure 2.
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Figure 2: Block diagram of the discrete motor model and extended Kalman filter.

The Kalman filter is based on a machine model in (discrete-time) state space. The
dynamic model for the PMSM in a stator-fixed reference frame (indices: ‘s’), choosing



the rotor-fixed current id, iq, the angular velocity ωe, and the rotor position γ as state
variable xk and the fundamental voltage as input uk, is described by the following
equations. This model assumes the velocity ωe to be constant in a small time interval
(sampling time Ts).
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with: R1 =  resistance, Ld/q = d/q axis inductance, ψ = permanent magnet flux linkage.

The resulting output vector yk consists of the estimated motor current in a stator-fixed
reference frame:
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The output vector is compared to the measured current vector. The difference is used to
correct the state vector of the system model. The state space model is non-linear due to
the cross product of the state variable xk. Consequently a nonlinear filter, such as the
extended Kalman Filter (EKF), will be implemented.

3. PHASE VOLTAGE CALCULATION

The extended Kalman filter algorithm requires the motor voltages as input quantities.
An alternative to the complex measurement and filtering of the motor voltage is the use
of the reference voltage for the PWM, available at the output of the current control. The
PWM generation is performed by space vector modulation (SVM). The SVM minimizes
the harmonic content, determining the copper losses of the machine, accounting for a
major portion of the machine losses. SVM also provides a more efficient use of the



supply voltage in comparison to sinusoidal modulation methods. The homopolar system
containing in the phase voltages must be considered in the Park transformation.
In case of an ideal inverter, the filtered phase voltage U assumes the shape of the
reference voltage Uref. Due to the delayed reacting of almost all semiconductor switches
at turn-on and turn-off, the phase voltages strongly deviate from the reference voltages.
This leads in the Kalman filter algorithm to large position and speed errors. At low
motor speed the control becomes even unstable. With positive current the duty cycles
are shorter, with negative current they are longer than required. Hence, the actual duty
cycle of a bridge is always different from that of the reference voltage. It is either
increased or decreased, depending on the load current polarity. This effect is described
by an error voltage ∆U
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dependent on the dead-time td, the DC-bus voltage Uc, the PWM-frequency fPWM and the
voltages UD and UT at transistor and diode [2]. These voltage values and the resistances
RT and RD of the switch change the inverter output from its intended value Uref to

)sign(
2

1 IURRIUU DT
ref ⋅∆−+⋅−≈ ,

used as input of the Kalman filter.

4. EXTENDED KALMAN FILTER ALGORITHM

The state model of the PMSM is non-linear. The electrical speed and the position of the
rotor are considered as both, state and parameter. The model matrices B and C depend
on the position of the rotor, the matrix A on the electrical speed. Therefore, the extended
Kalman filter (EKF) has to be used to estimate the parameters of the model matrices, as
well. The EKF re-linearises the non-linear state model for each new estimation step, as
it becomes available. Furthermore, the EKF provides a solution that directly cares for
the effects of measurement or system noise. The errors in the parameters of the system
model are also handled as system noise. The used algorithm of the EKF is based on [3].
It has to be distinguished between the filter and predictor equations. The predicted value
of the state vector xk+1|k is corrected by multiplying the filter gain and the difference
between estimated and measured output vector yk to the state vector xk|k.
In addition still the equation for the corrected covarianz matrix Pk|k is required.
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The matrix Kk is the feedback matrix of the extended Kalman filter (EKF). This matrix
determines how the state vector xk|k is modified after the output of the model yk is
compared to the measured output of the system. The filter gain matrix is defined by:
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in which R is based on the covariance matrix of the measurement noise.
Based on the calculated state vector xk|k, a new value of the state vector can be
predicted. The same applies to the error covariance matrix. The prediction is given by
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with the covariance matrix Q of the system noises. The system vector Φ and the output
vector h respectively can be derived from the model equations of the PMSM.
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where uq and ud are voltages in a rotor-fixed reference frame.
The critical step in the EKF is the search for the best covariance matrices. Q and R have
to be set-up based on the stochastic properties of the corresponding noise. The noise
covariance R accounts for the measurement noise introduced by the current sensors and
the quantization errors of the A/D converters. Increasing R indicates stronger
disturbance of the current. The noise is weighted less by the filter, causing also a slower
transient performance of the system. The noise covariance Q reflects the system model
inaccuracy, the errors of the parameters and the noise introduced by the voltage
estimation. Q has to be increased at stronger noises driving the system, entailing a more
heavily weighting of the measured current and a faster transient performance. The initial



covariance matrix P0 represents mean squared errors in knowledge of the initial
conditions. Varying P0 affects neither the transient performance nor the steady state
conditions of the system. In general, the entries of the covariance matrices Q and R are
unknown and can not be calculated. They are often set equal to the unity matrix. In order
to achieve a good filter performance, they must be filled based on experimental
investigations. This covers an iterative process for searching the best values. In the
following experiments, the best filter performance was obtained with
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whereby I is the identity matrix. Q, R and P0 are assumed to be diagonal.
The signal flow of the EKF in a recursive manner is shown in figure 3.
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Figure 3: Block diagram of the extended Kalman filter (EKF).

5. EXPERIMENTAL RESULTS

The turnaround time of the entire control system amounts to 227 µs and the used sample
time is Ts =250 µs. At low motor speed (ω ⇒ 0) the equations of the PMSM are
simplified as the voltage induced by the magnets is very small. Thus, no more predicate
can be made over the position of the magnets and the EKF fails. Since at standstill only
DC-values are given, the necessary flux variation must be forced by impressing a test
signal into the system. A signal, which can be implemented easily, represents an
additionally sinusoidal reference current in the d-axis of the motor, using the d/q axis-
symmetry of the rotor to estimate the real position. In all presented experimental results
the following d-axis reference current is used:
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whereby id
* results from the speed control. The generated reluctance torque is

compensated by a complementary q-axis current.
Figure 4 shows the experimental result of a speed reversal using the estimated speed and
position as feedback. Additionally, the real speed and position are measured and
compared. It can be seen that there is a very good coincidence between real and
estimated speed and position respectively.
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Figure 4: Speed reversal test. Above: Measured and estimated speed. Below: Error of the angle.

Figure 5 presents the response of the PMSM to a load step at a motor speed of
1000 RPM. The applied load amounts to 70% of the rated torque. The current controller,
using also the estimated values of d- and q-axis current, has a bandwidth of 926 Hz. The
load disturbance creates a small speed error about 0.5%. This error is caused by the
voltage estimation, depending on the dead time and resistance of the switches. The
steady state error can be further reduced by generating an offset for the speed reference
using the frequency of the measured current.
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Figure 5: Load step at time 0 and 3.2 s (70% of the rated torque). Above: Speed and angle error. Below:
Estimated q- and d-axis current.



6. CONCLUSION

This paper shows the design and the implementation for a speed-sensorless control of a
PMSM using the extended Kalman filter. Measurement and filtering of the motor
voltages are not required. Instead, the reference voltages of the PWM signals are used.
Results of the dynamic and steady state behavior of the extended Kalman filter are
given. The position of the drive can be estimated also at standstill permitting a position
control of the PMSM. The difference to the motor control with speed measurement is
very small.

ACKNOWLEDGEMENTS

This research is supported by the Ministry of Economy of Flemish Region (IWT-Vliet).
The authors are also grateful to the Belgian “Fonds voor Wetenschappelijk Onderzoek
Vlaanderen” for its financial support of this work.

REFERENCES

[1] C. Manes, F. Parasiliti, M. Tursini: “Comparative Study of Rotor Flux Estimation in Induction Motors
with a Nonlinear Observer and the Extended Kalman Filter”, IECON 1994

[2] Bose, B. K.: "Power Electronics and Variable Frequency Drives", IEEE Press, New York, 1997.
[3] Brammer, Siffling: “Kalman-Bucy Filter, Deterministische Beobachtung und stochastische Filterung”

R. Oldenbourg Verlag Muenchen, Wien 1994.
[4] Strejc, V.: "State space theory of discrete linear control", John Wiley & Sons, 1980.
[5] Rajashekara, K. S., Kawamura, A.: "Sensorless Control of Permanent Magnet AC Motors", IEEE

IECON Proceedings, pp. 1589-1594, 1994.

Gerd Terörde
Katholieke Universiteit Leuven
Dep. E.E./ESAT-ELEN
Kardinaal Mercierlaan 94, 3001 Leuven
BELGIUM
Telephone: +32 16 32 1031
Telefax: +32 16 32 1985
E-mail: gerd.teroerde@esat.kuleuven.ac.be


	INTRODUCTION
	SYSTEM MODEL
	PHASE VOLTAGE CALCULATION
	EXTENDED KALMAN FILTER ALGORITHM
	EXPERIMENTAL RESULTS
	CONCLUSION

