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Abstract: Deriving the magnetic force in moving devices 
from a finite element solution is troublesome because of the 
numerical differentiation applied to the magnetic vector 
potential to obtain the magnetic flux density. A higher 
accuracy is achieved by performing a local analytic post-
processing step applied to the air gap region between the 
moving bodies. For axisymmetric models, a finite Fourier-
Bessel series serves as the approximative local analytic 
solution for the potential field. Differentiation and integration 
is performed analytically on the series. Applying the Maxwell 
stress method to the local solution results in a force 
computation scheme that keeps the same convergence rate as 
the potential field solution. This enhanced method is applied 
to a tubular switched reluctance actuator. A comparison is set 
up between the classical Maxwell stress method and the new 
approach. 

 

1.- INTRODUCTION 
 
The design and optimisation of electric devices employ 

numerical simulation. In the case of finite element models, 
the accuracy of the simulation and the problem size are two 
factors that have to be balanced in order to obtain a good 
trade-off between accuracy and computational efforts. The 
problem size is mainly determined by the number of degrees 
of freedom in the finite element model. The accuracy of the 
computation depends on the tolerances of the material data 
and geometry, the truncation errors due to the finite element 
discretisation and the error propagation in all pre- and post-
processing routines. The calculation of forces is responsible 
for a significant part of the error propagation. It requires a 
field solution that is far more accurate than the resulting force 
is. The aim of this paper is to develop a method that keeps 
this error propagation as small as possible during the post-
process. 

 

2.- AXISYMMETRIC MAGNETOSTATIC 
FORMULATION 

 
The choice of the magnetic vector potential A  with 

B A= ∇ ×  fulfills the divergence-free condition for the 

magnetic flux density B . In the magnetostatic case, 
Ampère's law yields the partial differential equation 

 ( ) JA =×∇ν×∇ , (1) 

where ν  is the magnetic reluctivity and J  the imposed 
current density. 
 

A lot of electromagnetic devices, e.g. actuators with a 
cylindrical plunger and tubular motors, have mainly a 
cylindrical geometry and are excited by cylindrical windings. 
Their behaviour can be computed using an axisymmetric 
model with cylindrical boundary conditions and imposed 
currents in the tangential direction. The magnetic flux 
appears in the (r,z)-plane whereas the magnetic vector 
potential has only a component in the θ -direction (fig. 1). 
Equation (1) is reduced to [1],[2] 
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Obtaining an accurate solution in the neighbourhood of 
the axis of symmetry requires special treatment of the 
elements close to this axis, the use of higher order elements 
or the choice of special potentials [3]. Here, the potential 

θ=φ rA  is chosen. The integrals of hyperbolic terms are 
performed analytically for the elements close to the axis. 
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Fig. 1. r zθ  and xyz  coordinate systems. 



 

 

3.- DISCRETISATION ERROR 
 
The global error ε  of a 2D finite element solution is 

 phC ⋅≤ε , (3) 

where h represents the characteristic mesh size, p denotes the 
asymptotic rate of convergence and C is the convergence 
factor [4]. The convergence rate expresses the exponential 
decay of the discretisation error according to the decreasing 
mesh size h. The convergence factor is an upper bound 
independent of the mesh size and is influenced by the aspect 
ratio of the elements, the accuracy of the numerical 
integration and rounding-off errors. 

 
The asymptotic rate of convergence depends on the nature 

of the partial differential equation and the choice of base and 
test functions. In the case of elliptic partial differential 
equations, the error decays by 

 1+⋅≤ε qhC , (4) 

where q denotes the polynomial order of the elements [4],[5]. 
Using first order elements, the rate of convergence is O(h2). 
In terms of the number of degrees of freedom (DOF), the 
convergence is of order O(DOF -1). 

 
Unfortunately, the convergence rate decreases by one 

when numerical differentiation is applied. As a consequence, 
the convergence rate of derived quantities such as flux 
densities and forces is of the order O(hq), e.g. O(h) for first 
order elements. This fact indicates the difficulty in obtaining 
accurate forces out of a finite element potential solution. 
Even when the error on the potential field reaches a desired 
limit, the force error is considerable higher. 

 

4.- IMPROVING THE MAXWELL STRESS METHOD 
 

The Maxwell stress method computes the force out of the 
magnetic flux density 

 ( ) ( )
B = = −
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B  is derived from the finite element solution 

 A A Nj j
j

θ θ= ∑  (6) 

by differentiating the form functions N j . The result of this 
approach depends on the chosen contour of integration and 
the local orientation of the mesh. It is known that 
considerable errors appear when the mesh at the place of 

evaluation is rough or when the contour passes the 
neighbourhood of sharp corners in the model. Several 
improvements and error estimates are proposed in literature 
[6],[7],[8]. The accuracy can be increased by choosing a 
denser mesh, higher order elements or a dual formulation [9], 
all at the expense of a larger problem size. A second 
approach tries to overcome local erratic effects by error 
cancellation techniques [10],[11] or local smoothing 
[12],[13], e.g. by averaging the forces obtained by integration 
along several contours. Thirdly, some implementations pay 
particular attention to the orientation of the mesh or to the 
choice of an optimal path for integration [8]. Although all 
improvements increase the accuracy, some of them still rely 
on numerical differentiation and consequently do not 
improve the rate of the convergence of the force error. This 
however is essential to guarantee the maximum accuracy 
from a given discretisation. 

 

5.- SUPERCONVERGENCE AND LOCAL POST-
PROCESSING 

 
If the harmful numerical differentiation can be avoided, 

the force computation will retain the same convergence rate 
as the potential field. A method that converges at a higher 
convergence rate than predicted by the finite element theory, 
is called superconvergent [14]. Superconvergence can be 
achieved by local analytic post-processing operations [15]. 
Local post-processing has already been applied succesfully to 
calculate flux densities [15], energies and local forces acting 
on charged particles [16]. Computing forces using the 
Maxwell stress method combined with a local post-
processing approach is presented for Cartesian 2D models in 
[17], [15] and [12] and for 3D models in [5]. In this paper, a 
local post-processing scheme is developed for force 
computation in axisymmetric models. 
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Fig. 2. a) Domain of the analytic post-processing step. 
 b) Cross-section of the post-processing domain. 



 

 

6.- LOCAL ANALYTIC SOLUTION 
 
Consider a domain with a rectangular section in the (r,z)-

plane (fig. 2). Suppose that the values for the magnetic vector 
potential are known from a beforehand computed finite 
element solution evaluated on the boundaries r ri=  and 
r ro= . The magnetic field is assumed to be periodic in the z-
direction: 
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The domain contains a homogeneous, isotropic and linear 
material. There are no imposed currents. The governing 
differential equation is 
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The analytic solution is found by the separation of the 
unknowns: 
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where α k , βk , χ
k

, δ k , ε k , φk , γ k  and ηk  are 

unknown coefficients, J p  and Yp  are Bessel functions of 

order p and I p  and K p  are modified Bessel functions of 
order p [18],[19]. 

 
Because of the z-periodicity of the boundary conditions, 

the hyperbolic terms in (9) disappear and the possible spatial 

frequencies λ  are of the form λ
π

k
z

k k N= ∈
2
l

, / . The 

local analytic solution for the axisymmetric magnetostatic 
field problem is the Fourier-Bessel series 

 

( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ))

A a z r b z r

c z r d z r

k k k k k k
k

k k k k k k

θ λ λ λ λ

λ λ λ λ

= +

+ +

=

∞
∑ cos I sin I

cos K sin K

1 1
0

1 1 (10) 

where ak , bk , ck  and dk  depend on the boundary 
conditions at r ri=  and r ro= . 

 
 

7.- FINITE ELEMENT SOLUTION USED AS 
BOUNDARY CONDITION 

 
Consider a local post-processing domain in the air gap 

between two moving bodies (fig. 3). The assumption of z-
periodicity is valid as long as individual poles of long tubular 
devices or models with a sufficient amount of surrounding air 
are concerned (fig. 4). The magnetic vector potential values 
are extracted out of the finite element solution at the inner 
and outer boundaries and represented by the n -points Fast 
Fourier Transforms (FFTs) 
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Fig. 3. Algorithm of the enhanced force calculation technique:
finite element solution, finite Fourier series and local
analytic solution. 



 

 

The approximative local analytic solution is formed by the n-
terms truncated version of (10) (fig. 3). The coefficients 
a b c dk k k k, , and  follow from 
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and 
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It is now possible to derive the magnetic flux density (5) 
inside the post-processing area from (10) in an analytic way. 
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8.- FORCE CALCULATION 
 
The force is computed as an integral of the Maxwell stress 

tensor along a surface containing the moving part [7]. In 
axisymmetric models, the force components in the θ -
direction and in the r-direction vanish. The surface 
corresponds to a closed contour ( 1c - 4c  in fig. 4b). Because 
of the z-periodicity, the contributions to the force of the 
integrals along the horizontal parts 2c  and 4c  are in 
opposite and cancel. The integration of the stress tensor along 
the axis 3c  is zero. Consequently, the force in the z-direction 
is the integral along a line parallel to the axis of symmetry: 

 ∫ πν=
2

1

20

z

z
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The expressions (15) and (16) are substituted in (17). The 
force in the z-direction is obtained by integrating (17) along a 
line r rm=  parallel to the axis and inside the domain of the 
analytic solution. 
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The equality ( ) ( ) ( ) ( )
t

tttt 1KIKI 1001 =+  [19] is used to 

reduce (18) to 
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The force does not depend on the actual chosen contour 
mrr = . This indicates that the enhanced technique shows in 

this respect the same characteristic as do commonly used 
averaging techniques. The fundamental difference is however 
that the force is obtained directly from the second order 
convergent potential field instead of from the first order 
convergent flux densities. A strong resemblance is seen 
between (19) and the expression derived in an analogue way 
for the torque in 2D Cartesian models [17]. 

 
The computational work and the convergence factor of 

the enhanced force calculation depends on the number of 
terms n considered in the truncated Fourier-Bessel series. 
The numerical efforts are mainly determined by the 
evaluation of the magnetic vector potentials in 2n points in 
the post-processing domain and the 4n Bessel-function 
evaluations required to compute n sets of coefficients 
a b c dk k k k, , and . 
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Fig. 4. (a) Outline and (b) flux line plot of the tubular switched 

reluctance motor. 
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Fig. 5. Magnetic flux density in the r-direction: numerical 

differentiation (solid) versus local post-processing approach 
(dotted). 
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Fig. 6. Magnetic flux density in the z-direction: numerical 

differentiation (solid) versus local post-processing approach 
(dotted). 
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Fig. 7. Dependence of the reluctance force on the position of the 
translator: Maxwell stress method together with the novel 
approach (solid line) and virtual work principle (dotted 
line). 

9.- EXAMPLE 
 
Force simulations of a switched reluctance tubular motor 

[20],[21] with 6 stator slots, 7 stator teeth and 4 rotor teeth 
are presented (fig. 4a). A first order finite element triangle 
discretisation is constructed. The solution for the magnetic 
vector potential is shown in fig. 4b. 

 
A rectangular domain, spanning half of the width of the air 

gap is used as the local post-processing domain. The 256-
points Fourier series of the magnetic vector potential on both 
sides of the domain form the boundary conditions of the local 
differential problem. A finite Fourier-Bessel series is 
constructed. The magnetic flux densities obtained by the 
enhanced approach is compared to those obtained 
numerically in fig. 5 and fig. 6. The dependence of the force 
on the position of the translator is plotted in fig. 7. The 
convergences of the force errors for the different methods are 
compared in fig. 8 and Table 1. The convergence rate of the 
Fourier-Bessel based force computation is higher compared 
to the classical Maxwell stress approaches, with the 
averaging of results obtained along 3, 5 and 7 different 
contours. The convergence rates indicate the theoretical 
difference of a rate -1 for the enhanced method against the 
rate -½ for the classical technique when referred to the 
number of degrees of freedom. The averaging methods do 
not improve the convergence rate substantially but have an 
influence on the convergence factor. The scheme with 3 and 
5 contours have a decreasing convergence factor. The scheme 
with 7 contours seems to suffer from the closeness of the 
stator and rotor teeth. 

 
The technical importance of the improved force 

computation is the fact that a certain accuracy (e.g. 2 % in 
fig. 8) is reached with a smaller problem size (600 DOFs 
instead of 1000 DOFs) or a desired accuracy for the force is 
attainable within the existing computation resources (e.g. 
0.1 % in fig. 8). 

 

10.- CONCLUSIONS 
 
The convergence loss due to the numerical differentiation 

of the magnetic vector potential in the classical application of 
the Maxwell stress method, is overcome by employing a local 
analytic field solution. For axisymmetric models, a finite 
Fourier-Bessel series is constructed using the finite element 
solution as the boundary conditions on two sides of the air 
gap. The force calculation is performed on the series 
solution. The resulting force retains the same convergence 
rate as the potential field and does not depend on the mesh 
orientation and the actual chosen integration contour. The 
method is applied to a tubular reluctance motor. An extensive 
comparison is made between the classical Maxwell stress 
method and the improved force calculation scheme. 
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Fig. 8. Convergence of the Fourier-Bessel based force 

calculation (o) compared to the classical Maxwell stress 
approach (x). 

 
 

Table 1: Convergence rate p and convergence factor C 
 

Method Convergence rate 
exponent p 

Convergence 
factor C 

Maxwell stress -0.58 6 
Maxwell stress (3) -0.73 8 
Maxwell stress (5) -0.43 0.8 
Maxwell stress (7) -0.65 4 
Fourier-Bessel -0.84 7 
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