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 Abstract:  This paper presents a method to compute the 
magnetic and thermal finite-element solution of a single 
phase transformer using a weak coupling algorithm. 
Therefore a detailed 2D magnetic and a thermal model are 
generated, which are meshed separately and solved in a 
cascade algorithm of a static thermal and a time-harmonic 
magnetic solver. The results are verified by means of 
extensive measurements and show very good agreement. 
 
 

1.- INTRODUCTION 
 
 In electromagnetic energy converters, the temperature 
dependence of several material parameters results in a 
coupling between the magnetic and the thermal fields. The 
value of the local temperature is important to calculate the 
exact conductivity of the conductors and the temperature 
distribution as such is important considering the ageing 
process of insulation materials. The heat generated, depends 
on the currents and flux distribution, calculated in the 
magnetic FEM model. With the development of fast general 
purpose static and time-harmonic finite-element solvers [1], 
it is possible to iterate between the magnetic and thermal 
solution with a weak coupling algorithm. This approach is 
used to calculate the steady state currents and temperatures 
in a 6.3 kVA single phase transformer, cooled by natural 
convection. Therefore, it is necessary to employ a 
suff iciently detailed thermal model to be able to project all 
the data required by the magnetic solver. 
 
 

2.- WEAK COUPLING ALGORITHM 
 

2.1.- Equations to be solved 
 
 For the three cases, full l oad, no-load and short circuit 
operation, the separate magnetic and thermal problem have 
to be solved. For the magnetic problem, the classical time-
harmonic solution is used, with interpolations along the 
non-linear magnetisation curve. 
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with: 
A [Wb/m] magnetic vector potential 

sJ
�

 [A/m²] source current density 

 
 When k is considered constant in the temperature range 
assumed, the thermal problem is li near. 
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Fig. 1: Flowchart of the cascade coupling algorithm. 



with: 
q [W/m³] heat production in a region 
k [W/(m.K)] thermal diffusion coeff icient 

 
2.2- Solution Method 

 
 In a first step, the magnetic model is solved at a 
reference temperature (Fig. 1). With this solution, all heat 
sources (ohmic losses in the coil s, magnetic losses in the 
core) can be evaluated. Since the thermal model does not 
have the same mesh as the magnetic model, these heat 
sources are projected on the mesh of the thermal model [1]. 
In the second step, the thermal model can be solved to 
obtain the temperature distribution. After another projection 
of these temperatures on the mesh of the magnetic model, 
the material properties (conductivities in the coil ) can be 
adjusted to start the new magnetic calculation. 
Intermediately, appropriate relaxation techniques have to be 
applied to obtain an acceptable rate of convergence [2]. 
 
 To become an optimal mesh for each FEM model, the 
thermal respectively the magnetic one, an adaptation 
algorithm is used. During the iterations between magnetic 
and thermal model, these optimal meshes for each model are 
preserved. 
 
 

3.-. MAGNETIC MODEL 
 

3.1- Transformer Physical Data 
 
 A single phase transformer is used as an example. 
Table 1 gives some physical properties. 
 

Table  1: Rated electrical data of the transformer 
 

primary voltage Uprim 380 V 
primary current Iprim 16.7 A 

secondary voltage Usec 220 V 
secondary current Isec 28.6 A 

transformer ratio ü 1.727 - 
apparent power S 6300 VA 
rated frequency f 50 Hz 

 
 On each leg of the transformer core there are three 
windings: one with double wound 3 mm wire to form a 110 
V winding, a second of 3 mm wire to form a 220 V winding 
and a third of 1.9 mm thick wire to form a 160 V winding. 
The 220 V and 160 V winding are put in series with each 
other and in parallel with the other leg to form the primary 
voltage. The secondary is the series of the two double wound 
110 V windings. 
 

      core

                    coils

 
Fig. 2:  Geometry of the magnetic model. 



3.2- Magnetic Model 
 
 Because 2D models are used, the magnetic model is a 
cut through the core in parallel with the lamination. 
Although the insulation is not important for the magnetic 
model, it is modelled because the outline of the magnetic 
model has to match the outline of the thermal model for the 
projection algorithm. The bolts holding the core together are 
modelled, since they are made from magnetic steel. Fig. 2 
shows the geometry of the magnetic model. 
 

3.3.- Equivalent materials 
 
 Since the leakage inductances were deducted from 
measurements, the air gap in the core is not modelled in the 
geometry to reduce the number of nodes. As an alternative, 
the material for the core is defined using a corrected 
magnetisation curve. The original M6X magnetisation curve 
from the manufacturer is corrected for a total air gap length 
of four mm, considering the core structure [6,7]. The 
corrected permeabilit y in each point of the magnetisation 
curve can be calculated using the formula of Hopkinson for 
non-linear magnetic resistances in the form (3). 
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with: 

θ [A] excitation 
Φ [Wb] magnetic flux 

Fel  [m] path length through iron 

δl  [m] air gap length 

S [m²] section of the core 
 
 Fig. 3 shows a horizontal cut through the middle of the 
transformer, indicating the position of the 2D model. Since 
this model contains only a small portion of the real coil , the 
leakage inductances and the resistances have to be corrected. 
 The leakage inductances of the different windings can 
be deducted from a short circuit test. Since they are not 
temperature dependent, they are added in the external circuit 
equations which describe the different interconnections of 
the parts of the model representing the coil . The corrections 

on the resistances however are included in the model by 
scaling the resistivity of the material describing each 
specific coil region. 
 
 

4.- THERMAL MODEL 
 

4.1.- Calculation of Convection Coefficients 
 
 The transformer is cooled mainly by natural convection. 
The dimension analysis of the natural convection problem 
[3] shows that the convection coeff icient h is also a function 
of the difference between the temperature at the wall and the 
temperature at infinity. This is expressed by the formula 
 
  ),( PrGrfNu LL =  (4) 

 
with: 

k

Lh
NuL

.=  Nusselt number based on a 
characteristic length L 

h [W/(m².K)] convection coeff icient 
k [W/(m.K)] thermal diffusion coeff icient 
Pr Prandtl number 

 
 The temperature dependence is introduced through the 
Grashof number which is defined as (5). 
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with: 

g [m/s²] gravitational acceleration 

p

v

Tv

1

∂
∂β = [K-1] thermal expansion coeff icient of the 

surrounding air (with v the specific 
volume). For ideal gasses β=1/T. 

∞−=∆ TTT w  [K] temperature difference between the 
wall and the air at infinity 

L [m] characteristic length, in this case the 
height of the vertical wall  

ν [m²/s] cinematic viscosity 
 
During calculations, the Rayleigh number is frequently used 
(6). 
 
  PrGrRa LL ⋅=  (6) 

 
 To calculate the convection coeff icients for the vertical 
walls, the assumption of an isothermal wall i s made, 
together with a homogeneous laminar natural convection 
stream along this wall [3]. The mean Nusselt number can 
then be calculated from the equation of Squire and Eckert 
(7). 
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Fig. 3.  Horizontal cut through he transformer,  

showing the position of the 2D model. 
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For the horizontal parts of the transformer, li ke the top part 
of the core, the formula of Fujii and Imura [3] is used (8). 
 
  83/1 102     when 16.0 ×<= LLL RaRaNu  (8) 

 
 From the measured temperatures at every part of the 
transformer, it is clear that radiation effects can be neglected 
and the coeff icients of convection can be calculated. 
 

4.2.- Temperature Measurements 
 
 To decide for which parts of the transformer the 
assumptions of the convection mechanisms apply, the 
temperature distribution in steady state for full -load, short-
circuit and no-load is measured. Two principles of 
measurement are used. First, ten thermocouples are placed 
on the transformer, some of them inserted between the 
windings (Fig. 4). 
 
 Secondly, the transformer is photographed in steady 

state for the three load types with an infra-red camera. To 
obtain a homogeneous emittance, one side of the transformer 
is painted black. With the camera, the temperature 
distribution can be measured. This is important to make a 
reliable comparison with the computed results. 
 

4.3- Thermal Model 
 
 Except for the boundary conditions, the geometry of the 
2D thermal model is the same as in the magnetic model. In 
the thermal model, the boundaries coincide with the real 
boundaries of the transformer. 

 
 Fig. 5 shows how the windings, together with the 
insulating materials, are modelled by thermally equivalent 
regions. Two important 3D problems have to be solved by a 
correct definition of the equivalent materials in the 2D 
model. 
• As described in the magnetic model, the resistivity of the 

coil regions is adjusted to represent the whole coil i n the 
2D model. Therefore, the heat produced in one of the 
coil regions in the 2D model represents the heat which in 
realit y, is produced along half the circumference of the 
winding. 

• The heat removal from the windings through the core is 
assumed to flow only in the plane of the 2D model, while 
in realit y, there is a heat flow perpendicular to this plane. 

 
4.4.- Equivalent Materials 

 
 For the radial heat flow from the coil s to the 
surrounding air, each sector of the cylindrical coil i s 
considered to be identical. However, for the region where 
the two legs of the transformer are close together, it can be 
shown that the hydrodynamic boundary layers of both legs 
interfere. These effects are however neglected in the thermal 
2D model. 
Secondly, neglecting the heat flux perpendicular to the plane 
of the 2D model is adapted because the thermal diffusion in 
laminated steel is about 20 times smaller than parallel to the 
lamination [4,5]. 
 
 Finall y, a thermal equivalent model has to be found to 
represent the thermal behaviour of the coil regions 
accurately. These regions have to represent the insulated 
copper wires, together with the layers cardboard, separating 
each layer of wire from the next layer. The physical 
properties, used in the calculations, are presented in Table 2. 
 

Table  2: Heat diffusion coeff icients for different materials 
 

Material Heat diffusion coeff icient 

copper 380 W/(m.K) 
resin 0.15 W/(m.K) 

 
 

Fig. 4: Transformer with thermocouples and  
measurement apparatus. 
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Fig. 5: Geometry of the thermal model used.  
Three different coil regions are indicated. 



cardboard 0.14 W/(m.K) 
 
 Using these values, the equivalent material properties 
for each region, with different wire and insulation thickness, 
is calculated, using a small FEM models (e.g. Fig. 6). The 
results for the three coil regions are presented in Table 3. 
 

Table 3: Equivalent heat diffusion coeff icients for each coil region 
 

Coil region Symbol Heat diffusion coeff icient 

A A
eqk  0.969 W/(m.K) 

B B
eqk  0.468 W/(m.K) 

C C
eqk  0.695 W/(m.K) 

 
 

5.- COUPLED CALCULATIONS 
 

5.1.- Calculation of Coupled Phenomena 
 
 The effects which need a coupled calculation in this 
transformer are: 
• temperature dependence of the coil resistance 
• dependence of ohmic losses in the coil s on the currents 
• dependence of the iron-losses on the magnetic induction 
 The first effect can be calculated using (9), which gives 
for copper the corrected conductance σ, based on the 
conductance σ20°C at 20°C and the temperature in °C. 
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 In the coil regions, the dissipated heat is calculated with 
(10). 
 
  σ/²Jq =  (10) 

 
 The total i ron losses (hysteresis and eddy currents) are 
calculated using the local values of the induction, the main 
frequency in the model (50 Hz) and a table, which can be 
interpolated to give the losses (in W/kg) corresponding to 
the magnetic induction and the working frequency. The 
good agreement which is found for the no-load case, shows 
that this method is suff iciently accurate. 
 
5.2.- Equivalent heat production in stranded conductors 

 
 A common technique in modelli ng electromagnetic 
energy transducers is the representation of a coil region by 
an equivalent current carrying region, without modelli ng 
each separate conductor. For the magnetic problem, this 
results in a good approximation. If however, for each 
element the local heat production is calculated using (10), 
this result cannot be used in the thermal model directly. 
With 

SCu [m²] the real copper section, 
Stot [m²] the total modelled coil region, 
JCu [A/m²] the current density in the copper, 
Jtot [A/m²]the current density in the modelled coil region, 

the total heat calculated for a coil is (11). 
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 The results of the heat calculation have therefore to be 

corrected with a filli ng factor 




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S

S to obtain the real heat 

production in the copper. This is done in a software-routine 
that calculates the joule losses. 
 
 

6.- CALCULATION RESULTS AND COMPARISON 
WITH MEASUREMENTS 

 
Fig. 6: Solution of the FEM model used to calculate the 
equivalent thermal properties of one of the copper wires, 
insulated by resin and separated from the next layer with 

cardboard. 
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Fig. 7: Calculated temperatures at full load  

(Iprim=16.78 A, Isec=28.85A). 



 
6.1.- Full-load 

 
 Fig. 7 shows the computed temperature distribution in 
the thermal model. It is obvious that mainly the coil regions 
are heated by Joule losses. Verticall y seen, the centre of the 
coil s is the most. This is caused by the small outer winding 
of the thinner wire, which acts li ke a thermal blanket and as 
a large heat source. The arrows indicate the direction of heat 
flow and represent the gradient of the temperature field. 
 
 A large portion of the heat is transported towards the 
outer boundary, where natural convection occurs. The 
mainly radiall y directed heat flow in the coil region proves 
the assumption of homogenous thermal conductivity. 
Another important part of the heat is transported to the core. 
Due to vertical up- and downward oriented heat fluxes 
inside the core, the heat is transported to the top and bottom 
of the core, were the natural convection provides the 
cooling. The thin layer of insulating material around the 
core is a large thermal resistance. At full l oad, there is a 
temperature difference of 23°C over this layer. In the centre 
of the coil , local temperatures of 116°C are possible. 
 
 Fig. 8 compares the measurements for which an 
equivalent point in the model can be found with the 
measured temperatures. In general, the accuracy obtained is 
better than 6°C. For point 6, where the deviation is about 
10°C, the accuracy of the measurement was much lower, 
due to practical limitations, such as reachabilit y.  
 
 The solution of the circuit equations of the magnetic 
model has a good accuracy. Table 4 compares the measured 
electrical parameters, with the calculations. 
 

Table  4:  Comparison of measured and  
calculated electrical parameters 

 
Symbol Measured Coupled calculation 

Iprim [A] 16.76 16.78 
Isec [A] 28.76 28.85 

Pprim [W] 6331 6370 
Psec [W] 6082 6149 
η [%] 96.1 96.5 

 
6.2.- Short circuit and No-load 

 
 For the short circuit situation, the accuracy obtained is 
comparable with the results from the full load case. The only 
difference is the small amount of heat produced in the core, 
since the magnetic field is very weak at short circuit 
operation. This causes the temperatures to be a littl e bit 
lower than at full l oad. The hot spot temperature stays below 
90°C for Isec=25.2 A, according to the secondary cold short 
circuit voltage of 12.1 V. 
 Similar results were obtained for the no-load case, in 
which only core losses are significant. 
 
 

7.- CONCLUSIONS 
 
 The results presented here, proof that the cascade 
magnetic-thermal finite element calculation provides trustful 
information for the design of a small transformer. The 
methods for to set up a detailed thermal and magnetic 
model, including the effects of natural convection and core 
losses, are hereby validated. The use of two separate models 
with different meshes makes it possible to optimise the 
geometry of both the magnetic and thermal model. 
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Fig. 8: Comparison of calculated temperatures and measurements. 
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