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Abstract
A weak coupling between the magnetic and the
mechanical finite element model is established based upon
energy considerations. The coupling term results directly
into a finite element expression for the nodal
electromagnetic reluctance forces. This expression uses
the partial derivative of the magnetic stiffness matrix with
respect to displacement. This partial derivative is cal-
culated explicitly for the linear and the non-linear case.
The resulting force distributions are used as source terms
for a subsequent vibration analysis. The relative contri-
bution of the stator's modal shapes to the deformation
excited by these force distributions is calculated for all
rotor positions. This allows us to solve the equation of
motion for a selected set of modes and to predict the
machine’s noise and vibration spectrum at the design
stage. As an example, the coupling is used to analyse the
vibrational behaviour of a 6/4 switched reluctance
machine.

1  Introduction
The electric machine’s behaviour in generating vibrations
and noise is determined by the electromagnetic field in the
airgap and the mechanical structure of the machine. The
link between the magnetic and the mechanical analysis is
the electromagnetic force exerted by the magnetic field on
stator and rotor. To predict stator deformations caused by
a sequence of magnetic field distributions occurring
during operation, a local force formulation is needed.
Here, a finite element based expression for local
electromagnetic reluctance forces is presented. These
force distributions can be used as an input to a subsequent
mechanical analysis, static (elasticity analysis) or time-
harmonic (vibration analysis). For the modal shapes of the
stator and the force distributions occurring during
operation, mode participation factors (MPF) are
determined as a function of rotor position. The MPF
indicate the relative importance of a particular mode
shape towards the machine’s vibrations and noise. This
way, the noise and vibration spectrum can be anticipated
at the design stage. This modal vibration analysis is

illustrated using a 2D finite element model of a 6/4
switched reluctance machine (SRM). The method can be
readily extended to 3D problems.

2  The Magneto-Mechanical System
The finite element methods (FEM) for magnetostatic
analysis as well as the FEM for elasticity analysis are
based upon the minimisation of an energy function. The
elastic energy stored in a body with deformation a
(xi=xi,0+ui, yi=yi,0+vi , ai=[ui vi]

T) is [1]
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where K is the mechanical stiffness matrix, determined by
the structure’s geometry and material properties ρ, E
and ν, i.e. density, Young modulus and Poisson modulus.
The column vector a contains the unknown nodal
displacements. For normal stator deformations, the
mechanical system remains in the linear range (σ<<σ0.2).
The magnetic energy stored in an (unsaturated) system
with magnetic vector potential A is [2]
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where M is the global magnetic ‘stiffness’ matrix,
determined by the system’s geometry and magnetic
permeability µ. The column vector A contains the
unknown nodal magnetic vector potentials. Considering
the similar form of the energy expressions (1) and (2), it is
investigated whether the following combined system of
equations can support a coupled magneto-mechanical
analysis:
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where T is the magnetic source term vector representing
the right hand side of the Poisson equation (source current



density). R is the mechanical source term vector
representing forces other than those of electromagnetic
origin (external forces). The coupling matrices C and D
can be evaluated considering the total energy E in the
magneto-mechanical system (assuming the linear case):
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The partial derivatives of E with respect to the unknowns
[A  a]T identify with the combined system (3):
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where T∂A represents the magnetic energy increase ∂W
and R∂a the mechanical energy increase ∂U. The coupling
terms are now recognised as
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The coupling term D represents the dependency of
mechanical parameters in K on the magnetic field A, e.g.
magnetostriction effects. The coupling term C represents
the dependency of magnetic parameters in M on the
mechanical displacement a. These coupling terms play an
important role in the determination of forces related to
both effects.

3  Electromagnetic Forces
Using the coupling terms C and D, it is possible to solve
the matrix system (3) directly. Solving this strongly
coupled system requires an iterative solver that can handle
a non-sparse asymmetrical system, e.g. a GMRES solver.
Since convergence and computing speed can be expected
to be poor for this total matrix, it is useful to examine the
numerically weak coupled version of (3). In this and the
next paragraph, it is assumed that the mechanical material
properties E, ν and ρ do not depend on vector potential A
(neglecting magnetostriction), so that the coupling term D
vanishes. Decoupling (3) leads to an explicit expression
for the electromagnetic reluctance forces.
First we consider the linear case. When the mechanical
equation (6) is rearranged into
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the right hand side reveals an extra force –CA acting on
the mechanical subsystem K. Since all external forces are
gathered in R, (9) reveals a means to calculate the internal

reluctance forces, indicated by Frel . The forces Frel are
calculated from the previously computed vector potential
A0 and the partial derivative of the magnetic stiffness
matrix M with respect to deformation a:

0
T
0

)(

2

1
A

a

aM
AFrel ∂

∂−= . (10)

The coupling term C need not be calculated explicitly to
find Frel . This expression for Frel is also found directly by
deriving magnetic energy W (2) with respect to dis-
placement a [3]:
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where the unknowns A have to be considered constant
(constant flux), so that again A=A0.
In the non-linear case (and neglecting magnetostriction,
D=0), the magnetic stiffness matrix M becomes a function
of both vector potential and deformation, so that (5)
reduces to

T = M(A,a) A . (12)

The magnetic energy W is now given by the integral

∫=
A
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The pair of variables (A,T) plays the same role towards
energy and co-energy as the more common pair flux and
current (ψ,i). Again, the force Frel is found as the change
of magnetic energy W with respect to deformation a and
keeping flux constant (A=A0):
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where MT=M was used. When M is a function of a only,
(14) reduces to the linear expression (10). Rather than
calculating a finite energy difference between two finite
element solutions, the partial derivatives in (10) and (14)
represent more accurately the essence of virtual work [4].
There is no need for a second magnetic finite element
solution and no numerical derivations are performed.
When the coupling term C is replaced by the force Frel ,
the system (3) is decoupled into
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which can be solved with a simple cascade procedure
using solvers for positive-definite, symmetric matrices.



First the magnetic system MA=T is solved, giving A0.
Then Frel is evaluated using (10) or (14) and becomes an
extra force acting on the mechanical system Ka = R + Frel.
This scenario can be extended to the time-harmonic case
to calculate mechanical vibrations, but this approach is
limited to a single frequency. The method using Mode
Participation Factors presented in sections 6.2 and 6.4
does not have this restriction. First, the force expression
(14) will be derived analytically into a form that can be
readily implemented into finite element code.

4 Finite Element Expression for ∂M/∂a
The derivation ∂M/∂a is illustrated for the non-linear case,
using first order 2D triangular elements for simplicity. For
the magnetic element matrix [5]
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with reluctivity ν, element area ∆ and the familiar shape
function coefficients a1=x2y3–x3y2, b1=y2–y3, c1=x3–x2.
The partial derivative of (16) with respect to u1

(ai=[ui vi]
T) is
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Similar expressions are found for the partial derivative of
Me with respect to alternative displacements (u2, u3, v1, v2

and v3).
The third term in (17) requires some attention. The
reluctivity ν depends on flux density B according to the
saturation characteristic of the material. In the finite
element code used here, the material characteristic is
stored in ν(B2) format [2][5]. For first order triangles, B2

is given by
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where bi and ci are the common shape function
coefficients and Ai is the vector potential on node i. Since
in (18) only c2 , c3 and ∆ depend on u1 , the third term in
(17) can be calculated explicitly:
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In (19c), α is the angle between the y-axis and the edge

between nodes 2 and 3, and γ is the angle between B
&

 and
the x-axis. In (19d), all factors independent of B2 are
gathered in Gu1. The actual value of dν/dB2 is retrieved
from the material characteristic. The factor dν/dB2

acquires significant values only in elements that are
heavily saturated; in these elements the third term in (17)
becomes an important force component and must not be
neglected.
In the non-linear expression (14), the integral values of
the three terms in (17) are required. The integrals are
calculated per element (A0=[A1,0 A2,0 A3,0]

T) using A=tA0,

so that dA=A0dt, B2= 2
0B t2 and d(B2)=2 2

0B tdt. For the first

two terms in (17), the integral counterpart is found by
replacing ν by the following integral:
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where B0 is the actual value of the flux density in the
element under consideration. The integral of the third term
in (17) reduces to
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since νe
ijM is short for [bibj+cicj]/4∆ and does not depend

on ν or A. Using (19d), the integral in (21) becomes
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where ν* is the reluctivity in the linear part of the material
characteristic. From the integral in (24) it is seen that the
third term in (17) is linked to the co-energy in the system,
while the first two terms of (17) are linked to the energy
integral in (20). The relation between both energies is
given by
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so that only one integral needs to be evaluated.
Similar expressions are found for the partial derivatives
with respect to the other displacements (u2, u3, v1, v2 and
v3).

5  Magnetostriction
The coupling term D is treated in a dual manner to
evaluate forces related to magnetostriction. Rearranging
(5) into
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reveals an extra current density source–Da acting on the
magnetic subsystem M. This reveals a means to represent
magnetostrictive effects by equivalent current densities,
indicated with Jm . The current density sources Jm are
calculated from mechanical displacement a and the partial
derivative of the mechanical stiffness matrix K with
respect to magnetic vector potential A:
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The coupling term D need not be calculated explicitly to
find Jm. This expression for Jm is also found directly by
deriving elastic energy U (1) with respect to magnetic
vector potential A:
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where the unknowns a have to be considered constant
(virtual work principle).

6  Example: 6/4 SRM

6.1 Nodal Forces

The geometry of the example 6/4 SRM is shown in Fig.1a.
For this rotor position, the coil system indicated is current
excited and generates the magnetic field shown in Fig.1b.
This magnetic field is used to evaluate the reluctance
forces Frel acting on the stator structure. Fig.2 shows the
force distribution calculated for the non-linear case, using
(14). The radial forces acting on the teeth are larger than
the tangential forces. The radial forces do not produce
torque but do cause stator deformation.

6.2 Mode Shapes and Modal Participation

Using the stator’s mechanical matrices K (stiffness), Mm

(mass) and Cm (damping), the eigenvectors and
eigenvalues of the mechanical structure are found. These

3rd                8th 

4th        5th 

6th       7th 

9th      10th 
Figure 3: Selected modal shapes for the 6/4 SRM stator
structure. The mode numbers are assigned according to

ascending eigenfrequency.

a) b)

Figure 1: a) Geometry of the 6/4 SRM and
b) magnetic flux lines for excitation according to a).

Figure 2: Force distribution calculated from the magnetic
field in Fig.1b, using (14).



constitute the stator deformation mode shapes. Several 2D
mode shapes are shown in Fig.3; the machine mounting is
not considered in determining the mode shapes. Accurate
vibration analysis has to make use of 3D mode shapes [6].
The mode participation factor is defined as [7]:
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φ
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where the vectors φi and p are the i th mode shape and the
force distribution respectively. The mode participation
factor (MPF) indicates the correlation between force
pattern p and mode shape φi (Fig.4). To calculate (29), the
mechanical mesh needs to be mapped onto the magnetic
mesh [8].
Fig.5 shows the MPF as a function of rotor position
(resolution: 1º) for ovalization modes 4 and 5, triangular
modes 6 and 7, shrinking mode 8 and squaring modes 9
and 10. Since there is no triangular symmetry in the
system, modes 6 and 7 are hardly excited compared to the
other modes. Mode 8 represents the uniform shrinking and
expanding of the stator frame; this mode is excited with
the same sign (shrinking) for all rotor positions, with a
relatively small ripple.

6.3 Torque

One could expect that the MPF of the 3rd mode shape, the
rigid body rotation, is a measure for the instantaneous

torque of the SRM. However, the torque T can be
calculated more accurately using the cross-product
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where iF
&

 is the i th nodal force vector with position ir
&

(N = total number of nodal forces). Fig.6 compares the
two methods for calculating the torque. It can be seen that
the MPF for the rigid body rotation gives only a very
coarse estimate of the torque.

6.4 Modal Analysis

The MPF Γi have been determined as a function of rotor
position. When a constant rotor velocity is assumed, in

Figure 4: Illustration of Equation (29) correlating force
pattern p and mode shape φi

a)         b)

Figure 6: a) Mode participation factor of the rigid body rotation (3rd mode),
b) Torque of the 6/4 SRM as a function of rotor position, calculated using (30).

Figure 5: Mode participation factors as a function of rotor position.
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this case 2000 rpm, the MPF are also known as a function
of time Γi(t). Now the set of equations

)(2 2 tqqq iiiiiii Γ=ω+ωζ+ ��� (31)

can be solved for a selected set of significant modes φi . In
(31), qi is the generalised (modal) co-ordinate of mode i,
ωi is the mode’s circular eigenfrequency and ζi is the
modal damping factor. Only when the mechanical
damping is assumed to be proportional (Cm=αMm+βK),
the system of equations (31) can be decoupled and solved
separately [7]. In this analysis, damping is neglected
(ζi=0). The equations (31) are solved in the frequency
domain after applying a discrete Fourier transformation:
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where Qi is the spectrum of qi(t) and ∆ω=2π∆f with
∆f=133Hz (rotor angle resolution is 1º).

Fig.7a shows, in semi-log scale, the discrete spectrum
Γ8(k∆ω) of the MPF of the 8th mode (uniform shrinking)
with eigenfrequency f8=262 Hz (ω8=1647 rad/s). Fig.7b
shows the corresponding spectrum Q8(k∆ω) of the
generalised co-ordinate q8(t). Note how the DC-
component of the MPF acting on the 8th mode is filtered
out, while the excitation around 1647 rad/s (the 8th mode’s
eigenfrequency) is amplified. The modal spectra for all
selected modes can be found in this way and summed to
predict the motor’s entire vibration spectrum.

7  Conclusions
A numerically weak coupling between magnetic and
mechanical analysis is derived, leading to a finite element
based expression for the nodal electromagnetic reluctance
forces. This expression is based on the partial derivatives
of the magnetic stiffness matrix and yields the distribution
of local forces. The partial derivatives and their integrals
(for saturated systems) are presented in a form that can be
readily implemented in finite element code. The resulting
force pattern can be used for elastic or vibrational
analysis, torque calculation or any other post-processing

action. The stator modal shapes and their participation
factor in the force distribution are calculated for one rotor
position and a single time instant. Repeating this analysis
for all rotor positions allows us to solve the modal
equations of motion in the frequency domain and
anticipate the stator resonances and the noise frequency
spectrum at the design level.
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Figure 7: a) Spectrum of Γ8 and b) generalised co-ordinate Q8 .
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