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Abstract illustrated using a 2D finite element model of a 6/4
switched reluctance machine (SRM). The method can be
A weak coupling between the magnetic and thesadily extended to 3D problems.
mechanical finite element model is established based upon
energy considerations. The coupling term results directly
into a finite element expression for the nodah The Magneto-MechanicaI System
electromagnetic reluctance forces. This expression uses
the partial derivative of the magnetic stiffness matrix witfhe finite element methods (FEM) for magnetostatic
respect to displacement. This partial derivative is cagnalysis as well as the FEM for elasticity analysis are
culated explicitly for the linear and the non-linear casdased upon the minimisation of an energy function. The
The resulting force distributions are used as source terglastic energystored in a body with deformatien
for a subsequent vibration analysis. The relative contX=Xo+U, Yi=YiotVi, &=[U; v]")is [1]
bution of the stator's modal shapes to the deformation
excited by these force distributions is calculated for all ., _ 1 _T
2. : . U==-a Ka, (1)
rotor positions. This allows us to solve the equation of 2
motion for a selected set of modes and to predict the
machine’s noise and vibration spectrum at the desigihereK is the mechanical stiffness matrix, determined by
stage. As an example, the coupling is used to analyse the structure’s geometry and material properiesE
vibrational - behaviour of a 6/4 switched reluctanc@ngv, i.e. density, Young modulus and Poisson modulus.
machine. The column vectora contains the unknown nodal
displacements. For normal stator deformations, the
: mechanical system remains in the linear rar@ed ).
1 Introduction The magnetic energystored in an (unsaturated) system
The electric machine’s behaviour in generating vibratior&ith magnetic vector potentiél is [2]
and noise is determined by the electromagnetic field in the
airgap and the mechanical structure of the machine. TheW :lATMA @)
link between the magnetic and the mechanical analysis is 2 '
the electromagnetic force exerted by the magnetic field on
stator and rotor. To predict stator deformations caused tere M is the global magnetic ‘stiffness’ matrix,
a sequence of magnetic field distributions occurringetermined by the system’s geometry and magnetic
during operation, docal force formulation is needed. permeabilityy. The column vectorA contains the
Here, a finite element based expression for locanknown nodal magnetic vector potentials. Considering
electromagnetic reluctance forces is presented. Thes@ similar form of the energy expressions (1) and (2), it is
force distributions can be used as an input to a subsequglestigated whether the following combined system of
mechanical analysis, static (elasticity analysis) or timequations can support a coupled magneto-mechanical
harmonic (vibration analysis). For the modal shapes of thgalysis:
stator and the force distributions occurring during
operation, mode participation factors (MPF) are M DTAO [TO
determined as a function of rotor position. The MPF EC Kg%g: H?D 3)
indicate the relative importance of a particular mode el R0
shape towards the machine’s vibrations and noise. This
way, the noise and vibration spectrum can be anticipatédiereT is the magnetic source term vector representing
at the design stage. This modal vibration analysis i€ right hand side of the Poisson equation (source current



density). R is the mechanical source term vectoreluctance forces, indicated Iy, . The forcesF, are
representing forces other than those of electromagnetialculated from the previously computed vector potential
origin (external forces). The coupling matricBsandD A, and the partial derivative of the magnetic stiffness
can be evaluated considering the total endfgin the matrix M with respect to deformaticam
magneto-mechanical system (assuming the linear case):

oM (a)

i (10)

1,7
1 Frel :_EAO

E=U +W:%aTKa+§ATMA. (4)

The coupling ternC need not be calculated explicitly to

The partial derivatives dE with respect to the unknowns find F,. This expression foF is also found directly by

[A a]" identify with the combined system (3): deriving magnetic energyV (2) with respect to dis-
placement [3]:

J0E 1 7 K(A

%:MA"'Ea dA a:T, (5) M (? Dl 0

Fro| =——— =——-A"M(a) A5, 11

rel Ja da@ ( ) E ( )
E:EATMA+Ka:R, (6) '
da 2 oa where the unknown# have to be considered constant

(constant flux), so that agafe=A,.
where TOA represents the magnetic energy incre@ie In the non-linear case(and neglecting magnetostriction,
andRoa the mechanical energy increaié. The coupling D=0), the magnetic stiffness matiik becomes a function

terms are now recognised as of both vector potential and deformation, so that (5)
reduces to
_1 1 KA
P72 T M T=m@dA. (12)
c —EAT M (a) - The magnetic energi/ is now given by the integral
2 da A
T
The coupling termD represents the dependency of W_IT dA. (13)
0

mechanical parameters kKion the magnetic field\, e.g.
magnetostriction effects. The coupling te@represents ) )
the dependency of magnetic parametersMinon the The pair of variablesA(T) plays the same role t_owards

mechanical displacemeat These coupling terms play an€nergy and co-energy as the more common pair flux and

important role in the determination of forces related tgurrent (b,i). Again, the force is found as the change
both effects. of magnetic energyV with respect to deformaticen and

keeping flux constanid&Ay):

3 Electromagnetic Forces A
. . . . Foa = —a_W = —i TTdA
Using the coupling term€ andD, it is possible to solve rel da aaI '
the matrix system (3) directly. Solving this strongly 0
coupled system requires an iterative solver that can handle A M (A a)
a non-sparse asymmetrical system, e.g. a GMRES solver. = —IAT a—dA, (14)
Since convergence and computing speed can be expected 0 a

to be poor for this total matrix, it is useful to examine the

numerically weak coupled version of (3). In this and th@hereM™=M was used. WheM is a function ofa only,

next paragraph, it is assumed that the mechanical mate(ig4) reduces to the linear expression (10). Rather than
propertiesE, v andp do not depend on vector potenthl calculating a finite energy difference between two finite

(neglecting magnetostriction), so that the coupling tBrm element solutions, the partial derivatives in (10) and (14)
vanishes. Decoupling (3) leads to an explicit expressigapresent more accurately the essence of virtual work [4].

for the electromagnetic reluctance forces. There is no need for a second magnetic finite element
First we consider thénear case When the mechanical solution and no numerical derivations are performed.
equation (6) is rearranged into When the coupling terr® is replaced by the forcE,
the system (3) is decoupled into
ka=R-2ATM@ A _p_ca, )
2 da ™M omAO O T O

= , 15
EO K%E B?’FFreIE ( )

g{hich can be solved with a simple cascade procedure
using solvers for positive-definite, symmetric matrices.

the right hand side reveals an extra for€@A-acting on
the mechanical subsystdf Since all external forces are
gathered irR, (9) reveals a means to calculate the intern



First the magnetic systemlA=T is solved, givingA,. dv(B?) by siny sin@ -y)
= —= B

ThenF is evaluated using (10) or (14) and becomes an T4 B o (19¢)
extra force acting on the mechanical systar= R+ Fq. B 5
This scenario can be extended to the time-harmonic case  _ dv(B?) G . B2

i Lo . . = w1 BS- (19d)
to calculate mechanical vibrations, but this approach is dB?

limited to a single frequency. The method using Mode
Participation Factors presented in sections 6.2 and Qrﬁ(lgc) a is the angle between theaxis and the edge

does not have this restriction. First, the force expressi%n . ~
. . : . etween nodes 2 and 3, anid the angle betweeB and
(14) will be derived analytically into a form that can bethe x-axis. In (19d), all ?gctors ind%pendent B? are

readily implemented into finite element code. . . .
yimp gathered inG,;. The actual value ofiv/dB? is retrieved
from the material characteristic. The factok/dB?
acquires significant values only in elements that are

4 Finite Element ExpreSS|on foraM/da heavily saturated; in these elements the third term in (17)
The derivatiordM/da is illustrated for the non-linear case,P&COMes an important force component and must not be

using first order 2D triangular elements for simplicity. Fofeglected. _ _
the magnetic element matrix [5] In the non-linear expression (14), the integral values of

the three terms in (17) are required. The integrals are
v calculated per eIemenM:[AlyoAzyoAgyo]T) using A=tA,,
M =—[hb; +cicj] (16) Adt B= B2 2_o g2 i
Uk IER so thatdA=Aydt, B= B; t“ andd(B)=2 B, tdt. For the first
two terms in (17), the integral counterpart is found by
with reluctivity v, element are& and the familiar shape replacingv by the following integral:
function coefficients a;=Xoys—Xay>, b1=Yo—Ys, Ci=Xz—Xo.

The partial derivative of (16) with respect to, L B2

— Ty ;
@=[uv]’)is Vo J’v(Bz) d(B?), (20)

2Bj 3
e oo G -¢ 0O
oMji _ v g 0 . L
3 :EDOJ_ 2c, C3~C2p where By is the actual value of the flux density in the
th Bo cg-c, -2c3H element under consideration. The integral of the third term

in (17) reduces to

ME
by Mije +6_v_u. (17)
27 GIVAY

e
ATa—deAzlAgMiongia—vtth (21)
Similar expressions are found for the partial derivative of 0 Oy v Y oy E
M® with respect to alternative displacements (s, Vi, V»
andvs). s
The third term in (17) requires some attention. The
reluctivity v depends on flux densit$ according to the 0NV orA. Using (19d), the integral in (21) becomes

saturation characteristic of the material. In the finite

inceM i'f/v is short for pibj+cig]/4A and does not depend

element code used here, the material characteristic ist gy _ Yav
stored inv(B?) format [2][5]. For first order triangles? Ia_LJltdt ‘Gulj'@B tdt (22)
is given by 0 0 .
B
Gu ¢ v p2 4 n2
2_p2,p2__1 2 = —— B~d(BY) (23)
B® =Bk +By —E(CLA& +Cohyp + Cghg) 2B3 3 dB?
\Y
1 G 0
+— A+ +hiAR,  (18) = oz | BV, (24)
4N 2By oo

where b, and ¢ are the common shape funCtion\Nherev*
coefficients andy is the vector potential on nodeSince
in (18) onlyc, , c; andA depend ony,, the third term in
(17) can be calculated explicitly:

is the reluctivity in the linear part of the material

characteristic. From the integral in (24) it is seen that the
third term in (17) is linked to the co-energy in the system,
while the first two terms of (17) are linked to the energy
integral in (20). The relation between both energies is
ov _ dv(BZ) oB2 given by

— 19a
aUl dBZ aul ( )

BS

2 ° 2 0 _n2, 2 2
_ d\;(sz )% Bx(Az‘As)‘ble] (19b) J'DB dv =Bgvg '!)'V(B )d(B?) , (25)




so that only one integral needs to be evaluated. ouU
Similar expressions are found for the partial derivatives Im :‘ﬁ
with respect to the other displacemenig (5, vi, V» and

V3).

__il:ﬂ. T O
= dA%a K(A)aH, (28)

where the unknown& have to be considered constant
5 Magnetostriction (virtual work principle).

The coupling termD is treated in a dual manner to

evaluate forces related to magnetostriction. Rearrangi@ Example. 6/4 SRM
(5) into )

KA. 1 oa 6 6.1 Nodal Forces
oA ' The geometry of the example 6/4 SRM is shown in Fig.l1a.

For this rotor position, the coil system indicated is current
reveals an extra current density soula-acting on the excited and generates the magnetic field shown in Fig.1b.
magnetic subsysteid. This reveals a means to representhis magnetic field is used to evaluate the reluctance
magnetostrictive effects by equivalent current densitiefrcesF acting on the stator structure. Fig.2 shows the
indicated with J,,. The current density sourcek, are force distribution calculated for the non-linear case, using
calculated from mechanical displacemarnd the partial (14). The radial forces acting on the teeth are larger than
derivative of the mechanical stiffness matd with the tangential forces. The radial forces do not produce
respect to magnetic vector potental torque but do cause stator deformation.

MA=T-2aT
2

LKA,

Jn=—-Da=
m 2 OA

(27) 6.2 Mode Shapes and Modal Participation

Using the stator’'s mechanical matrides(stiffness),M,
The coupling ternD need not be calculated explicitly to(mass) and C,, (damping), the eigenvectors and
find J,. This expression fod,, is also found directly by eigenvalues of the mechanical structure are found. These
deriving elastic energy) (1) with respect to magnetic
vector potentiahA:

4th

) il WA\
\ ix\ ‘ r \ ™ W f/‘ \ : ] /// ‘ 2
\ ‘ O\~ ’ ~ 5h
Figure 1: a) Geometry of the 6/4 SRM and
b) magnetic flux lines for excitation according to a).
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Figure 3: Selected modal shapes for the 6/4 SRM stator

Figure 2: Force distribution calculated from the magnetic structure. The mode numbers are assigned according to
field in Fig.1b, using (14). ascending eigenfrequency.




constitute the stator deformation mode shapes. Several :
mode shapes are shown in Fig.3; the machine mounting
not considered in determining the mode shapes. Accura
vibration analysis has to make use of 3D mode shapes [t
Themode participation factois defined as [7]:

T
¢ p
-I- 1
¢ Mn@
where the vectorg andp are the™ mode shape and the
force distribution respectively. The mode participation
factor (MPF) indicates the correlation between force

patternp and mode shapg (Fig.4). To calculate (29), the
mechanical mesh needs to be mapped onto the magni®f@ue of the SRM. However, the torque can be

= (29)

Figure 4: Illustration of Equation (29) correlating force
patternp and mode shapg

mesh [8]. calculated more accurately using the cross-product
Fig.5 shows the MPF as a function of rotor position N

(resolution: 1°) for ovalization modes 4 and 5, triangular T = z Fi xf; , (30)
modes 6 and 7, shrinking mode 8 and squaring modes 9 =1

and 10. Since there is no triangular symmetry in the E is thei® nodal f t ith itiori
system, modes 6 and 7 are hardly excited compared to Yﬁ*éere i 1S el nhodal force vector with positiom,

other modes. Mode 8 represents the uniform shrinking afi = total number of nodal forces). Fig.6 compares the
expanding of the stator frame; this mode is excited witiivo methods for calculating the torque. It can be seen that
the same sign (shrinking) for all rotor positions, with &e MPF for the rigid body rotation gives only a very
relatively small ripple. coarse estimate of the torque.

6.3 Torque 6.4 Modal Analysis

One could expect that the MPF of tH& rBode shape, the The MPFT; have been determined as a function of rotor
rigid body rotation, is a measure for the instantaneogssition. When a constant rotor velocity is assumed, in
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Figure 5: Mode patrticipation factors as a function of rotor position.
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Figure 6: a) Mode participation factor of the rigid body rotatidhrt®de),
b) Torque of the 6/4 SRM as a function of rotor position, calculated using (30).
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Figure 7: a) Spectrum &f; and b) generalised co-ordinalg.

this case 2000 rpm, the MPF are also known as a functiaation. The stator modal shapes and their participation

of timeTi(t). Now the set of equations factor in the force distribution are calculated for one rotor
i . ) position and a single time instant. Repeating this analysis
G +2¢ g +oyg =T(t) (31) for all rotor positions allows us to solve the modal

equations of motion in the frequency domain and
anticipate the stator resonances and the noise frequency
spectrum at the design level.

can be solved for a selected set of significant mgdemn
(31), g is the generalised (modal) co-ordinate of made
w is the mode’s circular eigenfrequency afdis the
modal damping factor. Only when the mechanic
damping is assumed to be proportion@l,£aM+BK), 88 ACknOWIedgement
the system of equations (31) can be decoupled and solved’he authors are grateful to the Belgian "Fonds voor
separately [7]. In this analysis, damping is neglectéd/etenschappelijk Onderzoek Vlaanderen (FWOV)" for
(¢;=0). The equations (31) are solved in the frequendts financial support; Koen Delaere has a FWOV
domain after applying a discrete Fourier transformation: scholarship. The authors thank the Belgian Ministry of
Scientific Research for granting the IUAP No.P4/20 on
I (kAw) (32) Coupled Problems in Electromagnetic Systems. The
research Council of the K.U.Leuven supports the basic
numerical research.

L (kKAw) =—————,
Q (ke - (kAw) + o
where Q; is the spectrum ofj(t) and Aw=2mAf with

Af=133Hz (rotor angle resolution is 1°). 9 References
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