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Abstract − The system studied in this paper is a sensorless
control of a permanent magnet synchronous motor (PMSM). Its
structure is based on the extended Kalman filter theory using
only the measurement of the motor current for the on-line
estimation of speed and rotor position. The speed-controlled
PMSM is supplied by a voltage source PWM inverter. The
PWM generation is done by space vector modulation. The
motor voltages necessary for the Kalman algorithm are
calculated with consideration of the non-linearity of the
inverter. Sophisticated control rules such as Kalman filtering in
real time require a very fast signal processor specially adapted
to perform complex mathematical calculations. As digital
signal processors have become cheaper and their performance
greater, it has become possible to use them as a cost-effective
solution. The filter design and the real-time implementation
issues of a sensorless control using a TMS320C31 DSP for the
main control are presented. The I/O subsystem and the PWM
generation are based on a TMS320P14 working as a slave-
DSP. Finally, an evaluation of the experimental results is
presented.
Keywords: machine control, Kalman Filter

1. SYSTEM MODEL

The system considered is a permanent magnet synchronous
motor (PMSM) having permanent magnets mounted on the
rotor. The resulting back-EMF voltage induced in each stator
phase winding during rotation can be modelled quite accurately
as a sinusoidal waveform. A block diagram of the speed and
position estimator is shown in figure 1.
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Figure 1: Block diagram of the discrete motor model and extended
Kalman filter.

The Kalman filter is based on a machine model in (discrete-
time) state space. The dynamic model for the PMSM in a
stator-fixed reference frame (indices: ‘s’), choosing the rotor-
fixed current id, iq, the angular velocity ωe, and the rotor
position γ as state variable xk and the fundamental voltage as

input uk, is described by equations (1)-(5). This model assumes
the velocity ωe to be constant in a small time interval (sampling
time Ts). The motor parameters are:

• R1 stator per-phase resistance
• Ld,q d,q axis inductance
• ψ permanent magnet flux linkage
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The resulting output vector yk consists of the estimated
motor current in a stator-fixed reference frame:
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The output vector is compared to the measured current
vector. The difference is used to correct the state vector of the
system model.

The state space model is non-linear due to the cross product
of the state variable xk. Consequently a nonlinear filter, such as
the extended Kalman Filter (EKF), will be implemented. In
fact, it is impossible to prove the convergence of the model [1].



2. PHASE VOLTAGE

The extended Kalman filter algorithm requires the motor
voltages as input. An alternative to the complex measurement
and filtering of the motor voltage is the use of the reference
voltage for the PWM, available at the output of the current
control. The PWM generation is performed by space vector
modulation (SVM). The SVM minimizes the harmonic content
determining the copper losses of the machine, accounting for a
major portion of the machine losses. SVM also provides a more
efficient use of the supply voltage in comparison to sinusoidal
modulation methods. The homopolar system containing in the
phase voltages, shown at different modulation indices in Fig. 2,
must be considered in the Park transformation.

0 0.005 0.01 0.015 0.02

-1

-0.5

0

0.5

1

time [s]

re
fe

re
nc

e 
vo

lta
ge

 (n
or

m
al

iz
ed

)

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

alpha-axis voltage (normalized)

be
ta

-a
xi

s 
vo

lta
ge

 (n
or

m
al

iz
ed

)

Figure 2: shape of the reference voltage at modulation index
m = 0.5, m = 1.25 and m =2 (frequency = 50Hz).

In case of an ideal inverter, which is composed of lossless
and delay-free switching elements, the filtered phase voltage U
assumes the shape of the reference voltage. With the reference
xref it implies that U corresponds to:

ref
c xUU ⋅=

2
, Uc = DC bus voltage , | xref | ≤ 1 (6)

It was assumed that the inverter switches behave ideally.
This is not true for almost all semiconductor switches reacting
delayed to their control signals at turn-on and turn-off. The
phase voltages are strongly deviating from the reference
voltages. This leads in the Kalman filter algorithm to large
position and speed errors. At low motor speed the control
becomes even unstable. With positive current the duty cycles
are shorter, with negative current they are longer than required.
Hence, the actual duty cycle of a bridge is always different
from that of the reference voltage. It is either increased or
decreased, depending on the load current polarity. This effect is
described by an error voltage ∆U

cPWMd
DT UftUUU ⋅⋅++≈∆

2
(7)

dependent on the dead-time td, the dc-bus voltage Uc, the
PWM-frequency fPWM and the voltages UD and UT at transistor
and diode [2]. This and the resistant RT and RD of the switch
changes the inverter output from its intended value Uref to
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ref ⋅∆−+⋅−≈ , (8)

used as input of the Kalman filter algorithm.

3. EXTENDED KALMAN FILTER ALGORITHM

The state model of the PMSM is non-linear. The electrical
speed and the position of the rotor are considered as both, state
and parameter. The model matrices B and C depend on the
position of the rotor, the matrix A on the electrical speed.
Therefore, the extended Kalman filter (EKF) has to be used to
estimate the parameters of the model matrices, as well. The
EKF re-linearises the non-linear state model for each new
estimation step, as it becomes available. Furthermore, the EKF
provides a solution that directly cares for the effects of
measurement or system noise. The errors in the parameters of
the system model will also handled as system noise.

The optimal state estimation xk|k generated by the EKF is
achieved, as
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is minimized [1]. In [3] a recursive algorithm is presented for
the discrete time case to provide the solution for this equation.
The signal flow of the EKF in a recursive manner is shown in
figure 3.
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Figure 3: Block diagram of the extended Kalman filter (EKF).

It has to be distinguished between the filter and predictor
equations. The predicted value of the state vector xk+1|k is
corrected by multiplying the filter gain and the difference
between estimated and measured output vector yk to the state
vector xk|k. In addition still the equation for the corrected
covarianz matrix Pk|k is required.
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The matrix Kk is the feedback matrix of the extended
Kalman filter (EKF). This matrix determines how the state
vector xk|k is modified after the output of the model yk is
compared to the measured output of the system. The filter gain
matrix is defined by:
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in which R is based on the covariance matrix of the
measurement noise.

Based on the calculated state vector xk|k, a new value of the
state vector can be predicted. The same applies to the error
covariance matrix. The prediction is given by
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with the covariance matrix Q of the system noises. The system
vector Φ and the output vector h respectively can be derived
from the model equations of the PMSM.
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where uq and ud are voltages in a rotor-fixed reference frame.

4. COVARIANCE MATRICES

The critical step in the EKF is the search for the best
covariance matrices. Q and R have to be set-up based on the
stochastic properties of the corresponding noise. The noise
covariance R accounts for the measurement noise introduced
by the current sensors and the quantization errors of the A/D
converters. Increasing R indicates stronger disturbance of the
current. The noise is weighted less by the filter, causing also a
slower transient performance of the system.

The noise covariance Q reflects the system model
inaccuracy, the errors of the parameters and the noise
introduced by the voltage estimation. Q has to be increased at
stronger noises driving the system, entailing a more heavily
weighting of the measured current and a faster transient
performance.

The initial covariance matrix P0 represents mean squared
errors in knowledge of the initial conditions. Varying P0 affects
neither the transient performance nor the steady state
conditions of the system.

In general, the entries of the covariance matrices Q and R
are unknown and can not be calculated. They are often set
equal to the unity matrix. In order to achieve a good filter
performance, they must be filled based on experimental

investigations. This covers an iterative process for searching
the best values.

In the following experiments, the best filter performance
was obtained with
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whereby I is the identity matrix. Q, R and P0 are assumed to
be diagonal.

5. EXPERIMENTAL RESULTS

The turnaround time of the entire control system amounts
to 227 µs and the used sample time is Ts =250 µs. Figure 4
shows the experimental result of a speed reversal using the
estimated speed and position as feedback. Additionally, the real
speed and position are measured and compared.
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Figure 4: Speed reversal test. Above: Measured and estimated speed.
Below: Error of the angle estimation.

It can be seen that there is a very good coincidence between
real and estimated speed and position respectively. Figure 5
presents the response of the PMSM to a load step at a motor
speed of 1000 RPM. The applied load amounts to 70% of the
rated torque. The current controller, using also the estimated
values of d- and q-axis current, has a bandwidth of 926 Hz.
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Figure 5: Load step at time 0 and 3.2 s (70% of the rated torque).
Above: Speed and angle error. Below: Estimated q- and d-axis current.



The load disturbance creates a small speed error about 0.5%.
This error is caused by the voltage estimation, depending on
the dead-time and resistance of the switches. The steady state
error can be further reduced by generating an offset for the
speed reference using the frequency of the measured current.
The angle error is negligibly.

At low motor speed (ω � 0) the equations of the PMSM
are simplified as the voltage induced by the magnets is very
small. Thus, no more predicate can be made over the position
of the magnets and the EKF fails. Since at standstill only dc-
values are given, the necessary flux variation must be forced by
impressing a test signal into the system. A signal, which can be
implemented easily, represents an additionally sinusoidal
reference current in the d-axis of the motor, using the d/q axis-
symmetrie of the rotor to estimate the real position. In all
presented experimental results the following d-axis reference
current is used:
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whereby id
* results from the speed control. Figure 6 presents

the response of the d- and q-axis current to a step of the speed
reference from standstill to 1000 RPM. The corresponding
speed is shown in figure 7, marked as “EKF, negative d-axis
current”.
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Figure 6: Current at a speed step (see Fig. 7)
Above: q-axis current. Below: d-axis current.

The generated reluctance torque is compensated by a
complementary q-axis current. Nevertheless, further
investigations about the optimal frequency and magnitude of
the additionally d-axis current has to be made.

The electromagnetic torque Te can be expressed as:

( )[ ]qddqqe iiLLipT −−Ψ= (20)

The optimal control of the motor takes advantage of the
reluctance torque by introducing a negative (Ld < Lq) direct
axis current component. In figure 7 a comparison is given of
motor control with feedback of the estimated speed and
optimum d-axis current, motor control with feedback of the
estimated speed and no d-axis current and motor control with
feedback of the measured speed and position (FOC).
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Figure 7: Speed step with feedback of the estimated speed and position
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The reported filter algorithm was tested on a PMSM with
the main drive parameters:

• In : rated current = 10.6 A
• p : number of pole pairs = 3
• Ψ : permanent magnet flux = 0.256 Vs
• Ld : d-axis inductance = 8.8 mH
• Lq : q-axis inductance = 15 mH
• Jr : inertia of the drive = 0.113 kgm2

6. CONCLUSION

This paper has presented the design and the implementation
for a speed-sensorless control of a PMSM using the extended
Kalman filter. Measurement and filtering of the motor voltages
are not required. Instead, the reference voltages for the PWM
are used. Results of the dynamic and steady state behaviour of
the extended Kalman filter are reported. The position of the
drive can be estimated also at standstill permitting a position
control of the PMSM. The difference to the motor control with
speed measurement is very small.
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