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Abstract - The force computed by the classical Maxwell stress 
method along a contour between two bodies in a finite element 
model, depends on the chosen contour of integration and the 
local orientation of the mesh. The numerical differentiation of 
the discrete solution for the magnetic vector potential leads to 
the loss of one order of the convergence rate. An enhanced 
force calculation approach for axisymmetric models is 
proposed. A series solution consisting of analytical terms is 
constructed in the region between the moving bodies. The 
Maxwell stress method is applied to the local analytical 
solution. The method is used to compute a tubular permanent 
magnet synchronous machine. An improved convergence of the 
force error at decreasing mesh sizes can be stated. 

1. Introduction 

In numerical simulations, a trade-off is made between the 
desired accuracy of the results and the numerical problem size. 
The discretization error of finite element calculation is 
controlled by choosing an appropriate fine mesh. The force 
computation introduces a significant loss of accuracy when 
compared to the potential solution. An increased problem size 
may disable the possibility of numerical design and 
optimization for technical devices. In this paper, an enhanced 
force computation technique is developed to keep the error 
propagation as small as possible. An effective balance between 
accuracy and simulation speed is obtained by using first order 
finite elements combined with a mesh adaptation algorithm. 
Severe refinement of the model is avoiding by using highly 
accurate post-processing and force computation. 

2. Axisymmetric magnetostatic formulation 

The divergence-free condition for the magnetic flux density 
B  is imposed by the relation B A= ∇ ×  where A  denotes the 
magnetic vector potential. In the magnetostatic case, Ampère’s 
law leads to the elliptic partial differential equation 

( )∇ × × =ν∇ A J , (1) 
where ν  is the magnetic permeability and J  the imposed 

current density. In a model with a cylindrical geometry, 
cylindrical boundary conditions and excited by currents Jθ  in 
the tangential θ -direction, the magnetic field appears only in 
the (r,z)-plane. The magnetic vector potential has only a 
tangential component Aθ . Therefore, Equ. 1 is reduced to[1] 
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The axisymmetric domain is discretized by the triangular first 
order finite elements N j : 
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θ θ= ∑ . (3) 

3. Force computation based on the Maxwell stress 
tensor 

The magnetic flux density in an axisymmetric model, 
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is derived out of the finite element solution by a numerical 
post-processing step. The partial differentiations operate on the 
form functions: 
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The r-component of the flux density is piecewize constant 
whereas the z-component is built of a constant and a hyperbolic 
term (Fig. 1b). The flux density is less accurate than the linear 
approximated potential solution[2] (Fig. 1a). 

In axisymmetric models, the force components in the θ -
direction and the r-direction vanish. The force equals the 
integral of the Maxwell stress tensor in the z-direction Tz  
along a contour C, around the moving body: 
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Fig. 1 a) Finite element solution Aθ , b) Br  obtained numerically and c) Br  obtained by local analytic post-processing. 



 

 

In a tubular device, the force is computed along a line in the air 
gap and parallel to the axis of symmetry: 

F B B r dzz r z
z

z
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2
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The force integral relies on the flux densities. Moreover, a 
discrete integration along an arbitrary contour through the 
discontinuous flux density distribution causes a harmfull error 
propagation in the force computation. 

 

4. Discretization error 

The quality of a finite element simulation is measured in 
terms of the global error ε  on the solution. An a priori 
estimate is 

ε ≤ ⋅C h p , (8) 
where h is the characteristic mesh size, p the asymptotic rate of 
convergence and C the convergence factor[3]. The convergence 
rate expresses the exponential decay of the discretization error 
according to the decreasing mesh size h. The convergence 
factor is an upper bound independent of the mesh size and is 
influenced by the aspect ratio of the elements, the accuracy of 
the numerical integration and rounding-off errors. 

The asymptotic rate of convergence of the finite element 
solution is related to the nature of the partial differential 
equation and the choice of base and test functions. In the case 
of elliptic partial differential equations discretized by 
polynomial finite elements, the error decays as 

ε ≤ ⋅ +C hq 1 , (9) 
where q denotes the polynomial order of the elements[2-3]. 
Using first order elements, the rate of convergence for the 
magnetic vector potential is O(h2). Equivalently, in terms of the 
number of degrees of freedom (DOF), the convergence of 
axisymmetric solutions is of order O(DOF -1). 

The global error of derived field information depends on 
the discretization error on the potential solution and the error 
propagation in the post-processing routines. Additions and 
multiplications only alter the convergence factor. Numerical 
differentiation, however, introduces the loss of one order of the 
asymptotic convergence rate. Flux densities, reluctivities and 
forces obtained by differentiating the magnetic vector potential 
only exhibit a convergence of order O(hq). A sufficiently 
accurate potential field may bring up forces that do not reach 
the same prescribed limit. Moreover, increasing the accuracy of 
force calculation is obtained at the expense of exponential 
growing computational efforts. 

5. Local analytic post-processing 

To keep the same convergence rate as the finite element 
solution, the harmfull numerical differentiation in the force 
calculation scheme has to be avoided. This is possible if a 
representation for the potential solution is available in a form 
that is independent of the local discretization and is free from 
base functions suffering from numerical differentiation[4-5]. The 
Green’s functions related to the partial differential equation 
form a function base allowing accurate differentiation. An 
analytical solution in terms of Green’s functions is constructed 
in a homogeneous subdomain of the model, using the finite 

element solution as a boundary condition. The convergence 
rate equals that of the boundary condition. As the computation 
of derived quantities out of an analytic solution has no 
influence on the convergence rate of the error, a computation 
principle for highly accurate post-processing is developed. This 
approach is called superconvergent as it establishes a higher 
convergence rate for derived quantities than predicted by the 
finite element theory[2]. 

6. Local analytic solution for an axisymmetric 
magnetic field 

Consider a local post-processing domain between two 
moving bodies. The domain contains a homogeneous, isotropic 
and linear material. There are no imposed currents. The 
governing differential equation is 
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The analytic solution is a series in terms of the Green’s 
functions associated with the partial differential equation: 
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where α k , β k , χ k , δ k , ε k , φk , γ k  and ηk  are unknown 

coefficients, J p  and Yp  are Bessel functions of order p and 

I p  and K p  are modified Bessel functions of order p[6]. 
The finite element solution serves as the boundary 

conditions for the local partial differential problem. The 
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Fig. 2 Algorithm of the enhanced force calculation 
technique: finite element solution, finite Fourier 
series and local analytic solution. 

 



 

 

magnetic vector potential values are extracted out of the finite 
element solution at the inner and outer boundaries, r ri=  and 
r ro= , of the subdomain and are represented by the n -points 
Fourier transforms 
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The periodicity of the model in the z-direction, 
( ) ( )A r z A r zzθ θ, ,+ =l , (14) 

causes the hyperbolic terms in Equ. 11 to disappear. The set of 
possible spatial frequencies λ  is then 
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The local analytic solution for the periodic axisymmetric 
magnetostatic field problem is the Fourier-Bessel series 
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where ak , bk , ck  and dk  still depend on the boundary 
conditions on r ri=  and r ro= . 
An approximative local analytic solution is formed by the n-
terms truncated version of Equ. 16 (Fig. 2). The coefficients 
ak , bk , ck  and dk  follow from 
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7. Force calculation based on the local analytic 
solution 

The magnetic flux density inside the post-processing area is 
derived from Equ. 4 and Equ. 16 analytically. 
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The local analytic expressions for the flux density is less 
dependent on the local mesh and reaches almost the same 
accuracy as the finite element solution itself (Fig. 1c). 

The force in the z-direction is analytically integrated along 
a line r rm=  parallel to the axis and inside the analytic post-
processing domain: 
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The equality ( ) ( ) ( ) ( )I K I K1 0 0 1
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rearrange Equ. 21 to 
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The force does not depend on the actual chosen contour 
r rm= . The fundamental difference and advantage to 
commonly used averaging techniques is that the force is 
directly obtained from the second order convergent potential 
field instead of from the first order convergent flux densities. A 
strong resemblance is seen between Equ. 22 and an analogue 
expression for the torque in 2D cartesian models[2]. 

8. Application 

The three-phase stator winding of a four-pole tubular 
permanent magnet synchronous machine consists of two slots 
per pole and per phase[7] (Fig. 3a). The permanent magnets on 
the translator are magnetized in the z-direction. The active 
length of the air gap depends on the position of the translator. 
The symmetry of the geometry and the excitation allows the 
modelling of a single pole. Periodic boundary conditions 
connect the upper and lower boundaries. The computation is 
performed for different load angles and translator positions. 
The short-stator and short-rotor effects, characteristic for linear 
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Fig. 3 (a) Geometry and (b) magnetic flux lines of the tubular 

permanent magnet synchronous machine. 
 



 

 

motors[8], are considered approximatively. 
The first order finite element solution is shown in Fig. 3b. 

A rectangular domain in the middle of the air gap forms the 
local post-processing domain. The magnetic vector potentials 
of the finite element solution extracted along the inner and 
outer boundaries of the domain, are treated as 256-points finite 
Fourier series. A finite Fourier-Bessel series forms the 
analytical solution for the potential in the considered area. The 
magnetic flux densities obtained by the local analytic post-
processing are compared to those obtained purely numerically 
(Fig. 4). The force for different load angles is plotted in Fig. 5. 

Fig. 6 compares the convergence behaviours of the force 
errors of the classical Maxwell stress method and the enhanced 
force computation technique. The classical force computation 
scheme converges with the order O(DOF-½) whereas the 
enhanced technique reaches O(DOF-1). The economical-
technical importance of the improved force computation is the 
fact that a certain accuracy (f.i. 0.5% in Fig. 6) is reached with 
a smaller finite element problem size (3000 DOFs instead of 
10000 DOFs) or a desired accuracy for the force is attainable 
within the existing calculation resources (f.i. 0.1% in Fig. 6). 

9. Conclusion 

The troublesome numerical differentiation of the magnetic 
vector potential while applying the Maxwell stress method for 
force calculation is avoided by constructing and using a local 
analytic solution in the air gap between the moving bodies of 
an actuator. A second order convergence is stated for the global 
force error in the simulation of a tubular permanent magnet 
synchronous machine. The convergence of the force error is the 
same as at the finite element solution. The enhanced approach 
makes a further mesh refinement or an increased element order 
superfluous. 
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