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Abstract – The vibration spectrum of the stator of a 6-pole 
synchronous machine is analysed. First, a fully numerical vibration 
analysis is performed, using magnetical and mechanical 2D finite 
element models. This analysis makes use of modal participation 
factors, i.e. the correlation between instantaneous force patterns 
inside the machine and the stator mode shapes. Second, the stator's 
vibration spectrum during no-load generator operation is determined 
experimentally. Third, the stator mode shapes are determined using 
experimental modal analysis. The results from the experimental and 
numerical vibration analysis are compared and related to the 
experimental modal analysis of the stator. 
 
Keywords: finite element methods, electromagnetic forces, modal 
analysis, vibration control, coupled problems. 
 
1. Introduction 
 
 Stator vibrations are the main source of acoustic noise of electric 
machines. The stator vibrations are determined by the stator mode 
shapes and the excitation due to the magnetic field in the air gap. 
The mode shapes of the stator can be calculated using 2D or 3D 
mechanical finite element (FE) models, or they can be measured 
experimentally. The magnetic field exerts radial forces on the stator 
teeth, due to Maxwell's magnetic stress at the interface between 
media of different permeability. To take stator deformations into 
account, a local magnetic force formulation is needed. An FE based 
expression for local electromagnetic forces is derived using the 
virtual work principle. The mode participation factor (generalised 
modal force) is used to express the correlation between all 
significant stator modes and a specific force distribution. 
Subsequently, these mode participation factors (MPF) are calculated 
for all relevant rotor positions, corresponding to different time 
instants. The frequency spectrum of the MPF and the mechanical 
impedance of the individual mode shapes lead to an estimate of the 
stator's vibration spectrum. This analysis can be performed using 
mode shapes obtained numerically, or using mode shapes deter-
mined experimentally. The vibration spectrum obtained is compared 
to the vibration spectrum measured. 
 
2. Local electromagnetic forces 
 
 Both magnetostatic and elasticity FE methods are based upon the 
minimisation of an energy function. The total energy E of the 
electromechanical system consists of the elastic energy U stored in a 
body with deformation a[1] and the magnetic energy W stored in a 
linear magnetic system with vector potential A[2]: 
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where K is the mechanical stiffness matrix and M is the magnetic 
‘stiffness’ matrix. Considering the similar form of these energy 
terms, the following system of equations represents the numerically 
coupled magneto-mechanical system: 

 
M D
C K

A
a

T
R


















 =









  (2) 

where T is the magnetical source term vector. R represents forces 
other than those of electromagnetic origin. Setting the partial 
derivatives of total energy E with respect to the unknowns [A  a]T to 
zero, the combined system (2) with T=0, R=0 is retrieved: 
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The coupling term C can thus be recognised as 
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This coupling term represents the dependency of magnetic 
parameters on the mechanical displacement, e.g. permeability 
changes due to density or stress variations, but also magnetic energy 
variation due to geometry changes. Using (5) and neglecting 
external forces (R=0), the second equation in (2) is rearranged into 
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Table 1  Main properties of 6-pole SM machine 
rotor outer radius 73.5 mm 
stator inner radius 75.0 mm 

rotor field excitation 5 A 
emf 127 Vrms 

maximum flux density 1.0 T 

a)    b)  
 Fig. 1 a) Geometry of one pole of the 6-pole SM, 
  b) Magnetic field for rotor position 0º. 



 

 

This reveals a means to calculate the nodal electromagnetic 
reluctance forces Fem from vector potential A and the partial 
derivative of the magnetic stiffness matrix M with respect to 
deformation a. The validity of (6) has been tested against analytical 
models. The forces Fem can also be found by applying the virtual 
work principle to the magnetic energy W considering a virtual 
displacement a[3-4]: 
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The vector potential A has to remain unchanged as the nodes move 
through their virtual displacement ∂a[5]. Since ∂a alters the element 
area, the level of saturation changes and yields a different value for 
permeability µ. In a saturated system, (7) can still be used if the 
permeability dependence of M is taken into account in the partial 
derivative. However, a reasonable approximation can be made by 
fixing the element's permeability to the value found after solving the 
non-linear magnetic problem. 
 
3. Numerical magneto-mechanical analysis 
 
3.1 Mode participation factors 
 The main properties of the synchronous machine (SM) are given 
in Table 1. The geometry of one pole of the 6-pole SM is shown in 
Fig.1a. When the rotor coil is current excited, it generates the 
magnetic field shown in Fig.1b. This magnetic field is used to 
evaluate the local reluctance forces Fem on the stator, shown in Fig.2 
for rotor position 0º. These forces are pointing inwards and do not 
add to the torque; they only cause stator deformation. 
 Using the 2D mechanical stiffness matrix K and mass matrix Mm , 
the undamped 2D stator mode shapes are found, some of which are 
shown in Fig.3. The modes are calculated taking into account the 
stator iron, the stator coil copper (both mass and stiffness) and the 
rigid machine mounting. For a given rotor position, the mode 
participation factors Γi are found by correlating the actual force 
pattern f with the mode shapes φi (and not with the actual 
deformation a)[6]: 
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where φi is the ith mode shape and f is the force distribution for this 
rotor position. The jth element of the vector φi is  the displacement of 
the ith mode shape at the jth node. Similarly, f(j) is the force at the jth 
node. 
 Table 2 lists the eigenfrequencies and the MPF of the first 18 
modes for rotor position 0º. Fig.4 shows the MPF of modes 8, 14, 
15, 17 for all rotor positions, calculated in 2º steps. The MPF of all 
other modes stays below 2, except modes 5 and 12. Due to the 
machine symmetry, all MPF behave periodically over 60º rotor 

 
Fig. 2  Force distribution Fem acting on stator for rotor position 0º. 

Table 2  Mode participation factors for rotor position 0º 
mode 

number 
freq. 
(Hz) 

MPF mode 
number 

freq. 
(Hz) 

MPF 

1 55 –0.0123 10 655 –1.7921 
2 123 2.4439 11 704 0.5842 
3 264 –0.3395 12 752 8.7069 
4 271 –0.4586 13 885 –1.7793 
5 379 18.7630 14 954 3.1976 
6 413 1.3822 15 1249 6.1018 
7 442 7.5528 16 1084 –1.9335 
8 525 –1.0014 17 1111 2.5362 
9 573 0.0703 18 1276 –2.9673 
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Fig. 3  Selected mode shapes for the 6-pole SM stator structure 
with rigid mounting. 

 
ig. 4 Mode participation factor as a function of rotor position.
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 Fig. 5 a) Discrete amplitude spectrum Γ6(k∆f) of the MPF of the 6th mode (eigenfrequency 413 Hz). 
  b) Discrete amplitude spectrum Q6(k∆f) of the generalised co-ordinate q6(t) of mode 6. 
  c) Total vibration spectrum as a sum of modal spectra.
splacement. The MPF usually contain both a DC- and an AC-
mponent. Modes 5, 7 and 2 have an almost constant MPF of 
proximately 19, 7 and 3 respectively; these correspond with 
nstant (generalised) forces wanting to 'collapse' the stator. This 
ds to some shrinking of the stator, but no vibrations are 

oduced. 

 Modal decomposition 
The vibration of the stator is governed by 

)(tfKaaCaM mm =++ &&& , (9) 

ere a(t) is the nodal displacement and f(t) is the force pattern 
ting on the stator. Using the modal decomposition 

Pqa = , (10) 

th P the modal matrix containing a selected set of N stator mode 
apes and q the vector of generalised modal co-ordinates, (9) is 
nsformed into 
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ere all terms were premultiplied by PT. Only when the 
chanical damping Cm is assumed to be proportional (Cm= 
+βMm), the system of equations (11) can be decoupled into[7] 

&& &q q q ti i i i i i i+ + =2 2ζ ω ω Γ ( ) , i = 1..N. (12) 

ere ωi is the mode eigenfrequency and ζ i is the modal damping 

factor. Here damping is neglected (ζi=0) and only the 18 modes of 
Table 2 are considered. Note that the modal decomposition indeed 
transforms the force f(t) into the MPF Γi(t), i = 1..18, as prescribed 
by (8). Since the MPF are known as a function of rotor position, the 
rotor speed allows us to find the MPF as a function of time. The 
separate equations (12) are solved in the frequency domain after 
applying a discrete Fourier transformation on qi(t) and Γi(t): 
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Fig.5a shows, in semi-log scale, the discrete amplitude spectrum 
Γ6(k∆f) of the MPF of the 6th mode with eigenfrequency f6=413 Hz 
(indicated by the vertical line). Fig.5b shows the corresponding 
amplitude spectrum Q6(k∆f) of the generalised co-ordinate q6(t) 
calculated using (13). The higher frequency components are 
attenuated more than the lower frequency components, due to the 
relatively low value of f6. Around f6 , there is a local amplification of 
the response of this mode. 
 
3.3 Total vibration spectrum 
 The spectrum of any individual mode shape can be found as 
described above. The separate complex spectra of the relevant 
modes are summed to give the machine's total vibration spectrum. 
Fig.5c shows the amplitude spectrum of the sum of the spectra of 
the 18 selected modes. The eigenfrequencies of the 18 modes are 
indicated by the vertical lines. This total spectrum represents the 
stator vibration as predicted by the numerical 2D magnetical and 
mechanical model. 

a)  b)  
 frequency (Hz) frequency (Hz) 

Fig. 6  Experimentally determined vibration spectrum of SM stator surface a) without rotor excitation and b) with rotor excitation. 



 

 

 
3.4. Experimental verification 
 The synchronous machine is measured during no-load generator 
operation, driven at 1000 rpm by a DC motor. By applying a single 
accelerometer to the stator surface, two vibration spectra are 
measured: one before and one after applying the rotor excitation. 
The spectrum in Fig.6a represents stator vibrations of mechanical 
origin only (or introduced by the motor control of the driving DC 
machine), since no electric or magnetic field is present in the 
machine during this measurement. Fig.6b shows the vibrations 
caused by both the mechanical system and the magnetic field in the 
air gap (rotor excitation Ib = 7 A). The magnetic field introduces 
additional peaks in almost the whole frequency band measured. 
 The difference between the spectra in Fig.6a and Fig.6b has to be 
compared with the spectrum in Fig.5c. The numerical 2D models 
predict that vibrations induced by the magnetic field occurs mainly 
around 400 Hz and in the frequency band 750 Hz – 1100 Hz. Fig.6 
confirms that these frequency bands are indeed sensitive to a large 
increase of vibrational components caused by the magnetic field. 
The pure DC-component in Fig.5c represents the static deformation 
of the stator discussed earlier and cannot be verified using an 
accelerometer. 
 The prediction in Fig.5c fails at the low frequency side. The 
fundamental force components at 100 Hz and 200 Hz occurring in 
the models are not found with the same magnitude in the 
experiment. The numerical 2D model overestimates the importance 
of these fundamental components. Further research will indicate 
whether this difference can be resolved using 3D mechanical finite 
element models, with or without modelling the stator coil damping. 

4. Experimental modal analysis 
 
 An experimental modal analysis (EMA) is performed on the 
stator of an identical synchronous machine, in order to find the most 
important mode shapes and their eigenfrequencies[8]. The rotor, the 
end caps and the total electrical system (contacts, stator coils, etc.) 
are removed from the machine. Table 3 lists the eigenfrequencies of 
the first 14 modes. 
 Comparing Table 2 and Table 3, it is seen that the 2D mechanical 
model underestimates the model density of the stator[9]; the 
calculated 2D modes are spaced more evenly than the measured 
modes. Also, the 2D model predicts more modes in the region below 
470 Hz, while the EMA does not detect stator modes in this region. 
 The influence of the stator coils (mass and damping) and the 
presence of the end caps on the stator mode shapes has to be 
estimated by repeating the EMA for a stator with stator coils (and 
end caps). 
 
 
 
 

 
 
 
5. Conclusion 
 
 A finite element based expression for local electromagnetic 
reluctance forces is presented. The stator’s modal shapes are 
calculated using a 2D mechanical finite element model. The mode 
shapes are correlated with the force distributions for all relevant 
rotor positions. From the resulting mode participation factors, the 
vibration spectrum of the individual modes is found. Summing 
these complex mode spectra gives the total vibration frequency 
spectrum of the machine, which in this way can be anticipated at the 
design level. The numerical prediction of vibrations caused by the 
magnetic field corresponds well with the difference between the 
measured vibration spectra before and after rotor excitation. This 
technique of vibration prediction using mode participation factors is 
very promising, considering the fact that even the use of simple 2D 
models yields good results. Future research will focus on more 
accurate modelling in 3D. 
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Table 3  Eigenfrequencies of stator structure without coils 
mode 

number 
freq. 
(Hz) 

mode 
number 

freq. 
(Hz) 

1 472.9 8 1041.3 
2 608.3 9 1184.3 
3 694.5 10 1199.9 
4 725.6 11 1224.1 
5 729.2 12 1232.8 
6 780.2 13 1423.5 
7 785.5 14 1504.2 
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