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Abstract - Finite element discretizations of low-frequency 
time-harmonic magnetic problems lead to sparse, complex 
symmetric systems of linear equations. The question arises which 
Krylov subspace methods are appropriate to solve such systems. 
The Quasi Minimal Residual method combines a constant 
amount of work and storage per iteration step with a smooth 
convergence history. These advantages are obtained by building 
a quasi minimal residual approach on top of a Lanczos process 
to construct the search space. Solving the complex systems by 
transforming them to equivalent real ones of double dimension 
has to be avoided as such real systems have spectra that are less 
favourable for the convergence of Krylov based methods. 
Numerical experiments are performed on electromagnetic 
engineering problems to compare the Quasi Minimal Residual 
method to the Bi-Conjugate Gradient method and the 
Generalized Minimal Residual method. 

 
 

I. INTRODUCTION 
 

Sinusoidally excited eddy current problems arise in e.g. the 
design and optimization of induction furnaces, transformers 
and alternating current machines. They are commonly treated 
as time-harmonic magnetic field problems [1]. Their finite 
element discretizations result in sparse, complex symmetric 
systems of equations. Solving those systems often absorbs 
more than 90% of the overall CPU-time of the numerical 
simulation [2]. Hence, a study of iterative methods for this 
specific kind of matrices is appropriate. 

To solve large sparse systems, Krylov subspace iterative 
solvers have become competitive and often outperform direct 
solving techniques [3], [4], [5], [6], [7]. This investigation 
deals with the efficiency and robustness of different Krylov 
subspace solvers as solvers for complex symmetric systems. 
Such systems were also considered in [8] and [9]. In the 
electromagnetic computing community, one typically uses the 
Bi-Conjugate Gradient Method (BiCG) or the Generalized 

Minimal Residual Method (GMRES). In this paper, the Quasi 
Minimal Residual (QMR) method is studied as an alternative 
for the latter two. 

 
II. TIME-HARMONIC MAGNETIC FORMULATIONS 

 
The relevant equations are derived from the Maxwell 

equations by taking the following consideration into account. 
The dimensions of the models are small compared to the 
electromagnetic wave length corresponding to the frequency 
range of 0-1000 Hz. Therefore, the displacement-current term 
∂ ∂D t  in Maxwell's equations is neglected [1]. The 
divergence-free condition for the magnetic flux density B  is 
ensured by expressing B  in terms of the magnetic vector 
potential A  as B A= ∇ × . Faraday's law is reduced to 

E A= −∇ −V
t

∂
∂

, (1) 

with E  the electric field strength and V  the electric scalar 
potential. The current density J  is related to E  by 

J E A J J= = − − = +σ σ∇ σ ∂
∂

V
t s e , (2) 

where σ  is the electric conductivity, J s  the source current 
density and Je  the eddy current density. Ampère's law in 
terms of A  and V  is 

( )∇ × × + = −ν∇ σ ∂
∂

σ∇A A
t

V , (3) 

where ν  is the magnetic reluctivity. In a lot of devices, the 
magnetic field varies sinusoidally in time. In that case A  and 
V  are represented by the complex phasors $A  and $V  as 

{ }A A= Re $ je tω  (4) 
and 

x

z

y

( )B = B Bx y, ,0

( )A = 0 0, , Az

Ω
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( )J = =0 0, , ct.J z
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Fig. 1. 2D cartesian geometry. 
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{ }V Ve t= Re $ jω , (5) 
where ω π= 2 f  and f  is the frequency. For a 2D cartesian 
coordinate system (Fig. 1), (3) becomes the complex 
Helmholtz equation 

∂
∂ ν

∂
∂

∂
∂ ν

∂
∂ ωσ σ∇x

A
x y

A
y A Vz z

z

$ $
j $ $









 +









 − = . (6) 

The weak formulation of (6) is discretized by means of linear 
and triangular finite elements giving 

( )K L A Tkl kl zl
k

k+ =∑ j $ω  (7) 

where 

∫
Ω

Ω∇⋅∇ν= dlkkl NNK  (8) 

L N Nkl k l= ∫ σ d Ω
Ω

 (9) 

and 
( )T V Nk k= −∫ σ∇ $ d Ω

Ω
 (10) 

N k  is the nodal form function associated with the mesh 

node k, $Azk  is the coefficient in the discrete solution 
corresponding to form function N k  and Ω  is the region of 
interest. The resulting system (7) will further be denoted by 

Ax b=  (11) 
with A K L= + j . It is sparse and complex symmetric: 

A AT= . 
External circuit connections are taken into account by 

adding dense algebraic equations to the system. The matrix 
symmetry is preserved by choosing appropriate extra 
unknown currents and voltages [10]. In the case of rotating 
electric devices, the motional electromagnetic force enters as 
the σrv B× -term in the differential equation (3). It is possible 
to incorporate this term in the σ ∂ ∂A t  term under three 
conditions: the geometry is invariant under relative motion, 
the mechanical speed is linearly related to the frequency and 
the magnetic field is sinusoidally distributed along the airgap 
between the moving and the stand-still part of the model. 
Induction motors can be modelled in this way with a 
sufficient accuracy for the computation of stationary regimes 
[11]. 

 

 
III. KRYLOV SUBSPACE METHOD FOR COMPLEX SYMMETRIC 

SYSTEMS 
 
The Krylov subspace generated by the matrix A  and 

vector v  is the subspace 

( ) ( )K A v v Av A v A vm m, span , , ,...,= −2 1 . (12) 

Given an initial guess x0 , Krylov subspace methods solve the 
linear system (11) iteratively by computing iterands 

( )x x K A rm
m∈ +0 0, , with r b Ax0 0= −  the initial residual, 

converging to the exact solution for increasing iteration step 
m. Let the columns of [ ]V v vm m= 1,... ,  form a basis for 

( )K A rm , 0 . Vector xm  is then expressed as 
x x V ym m m= +0  where ym  is a vector of coefficients. 
Krylov subspace methods differ in the construction of the 
basis Vm  and the criterium employed for determining ym . 

 
A. Krylov Subspace Basis Construction 

 
Two methods are commonly used to construct a basis for 

( )K A rm , 0 : Arnoldi's method and Lanczos's method. 
 

A.1 Arnoldi’s method 
 

Assume that a set of m orthonormal vectors { }v vm1,...,  
has already been computed. The Arnoldi method expands this 
set to a orthonormal basis for ( )K A rm+1

0,  by 
orthogonalizing t Avm=  with respect to this set and 
normalizing the resulting vector to give vm+1 . The matrix Vm  
and the vector vm+1  then satisfy 

AV V Hm m m m= + +1 1
~

,  where V V Im
H

m m+ + +=1 1 1 . (13) 

Here, ~
,Hm m+1  is an upper ( )m m+ ×1  Hessenberg matrix 

with elements defined by the Arnoldi algorithm. The ( )m + 1 -
th basis vector vm+1  is constructed using all previous vectors 

{ }v vm1,..., , resulting in long recurrences. These long 
recurrences are expensive: both the memory requirements 
(storing all vectors vi ) and the CPU-time (orthogonalizing 
with respect to all vi ) grow linearly with m . 

 
A.2 Lanczos method 

 
The cost of long term recurrences can be avoided by 

resorting to a bi-orthogonalization procedure. Then the basis 
Vm  is orthogonalized with respect to a set of basis vectors 

{ }w wm1,...,  of a second Krylov subspace Lm . In this case, 
we have that 

mmmm
H

m TDAVW ,=  where W V Dm
H

m m=  (14) 
and where Dm  and Tm m,  are diagonal and tridiagonal 
respectively. For complex symmetric matrices, a convenient 
choice for the space Lm  is 

( ) ( ){ }L K A r v v K A rm
m m= = ∈, ,0 0 . (15) 

Then mW  can be taken as mV  and the mV -sequence is 

mmmm TVAV ,11
~

++=  where V V Dm
T

m m= . (16) 



 

 

~
,Tm m+1  is the ( )m m+ ×1  tridiagonal matrix formed as an 

expansion of Tm m, . In this way the need of constructing the 
space Lm  explicitly is avoided. As the matrix Tm m,  in (14) is 
tridiagonal, the basis Vm  can be computed by short 
recurrences: computing vm+1  requires as basis vectors only 
vm  and vm−1 . The Lanczos algorithm (14) corresponds to 
the Arnoldi algorithm where the bilinear form 
< > =v w w vT

T,  is used instead of the inner product 

< > =v w w vH
H, . This Lanczos algorithm may break down 

in the event that a generated basis vector is a quasi-null 
vector, i.e. a vector for which < > =v v T, 0  even if v ≠ 0 . 
 
B. Projection and Minimal Residual Criteria 
 

Once the basis Vm  has been constructed, the coefficient 
vector ym  can be computed by either a Ritz-Galerkin, 
Petrov-Galerkin or a (quasi-) minimal residual approach. 

 
B.1 Ritz-Galerkin approach 

 
The Ritz-Galerkin approach requires that the residual 

vector r b Axm m= −  is orthogonal to the Krylov subspace 
with respect to the proper inner product: 

V rm
H

m = 0 . (17) 
 
B.2 Petrov-Galerkin approach 

 
In the Petrov-Galerkin approach, the residual rm  is made 

orthogonal to the space Lm . With the choice of Lm  in (15), 
this requirement is equivalent to 

V rm
T

m = 0 . (18) 
 

B.3 (Quasi) Minimal Residual approach 
 
In the minimal residual approach, the Euclidean norm 

rm 2  is minimized over the space ( )K A rm , 0  at each 
iteration step. 

The basis vectors generated by the Lanczos algorithm are 
< >, T -orthogonal, rather then < >, H -orthogonal. Hence, 
the approach 

 
determine ym  such that 

r V r e T y

V r e T y

m m m m m

y C
m m mm
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2
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
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
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∈
+ +

~

min ~

,

,

 (19) 

requires solving a least-squares problems that leads to an 
algorithm for which work and storage per iteration step grow 

linearly with m. Therefore, Freund [8] suggested to replace 
the true minimization by the following quasi-minimization: 

determine ym  such that 

r r e T y

r e T y

m m m m m

y C
m m mm

2 1 0 2 1 1 1 2

1 0 2 1 1 1 2

= −

= −

+ +

∈
+ +

ω

ω

Ω

Ω

~

min ~
,

,
 (20) 

where ( )Ωm m+ +=1 1 1diag ,...,ω ω  is a scaling matrix with 
weights 

ω k kv= 2 . (21) 
The Lanczos and Arnoldi algorithms are combined with 

one of the above criteria to obtain different Krylov subspace 
methods for solving (11) (Table I). For real matrices, the 
Conjugate Orthogonal Conjugate Gradient (COCG) and 
Quasi Minimal Residual (QMR) algorithms reduce to the 
Conjugate Gradient (CG) and Minimal Residual (MINRES) 
algorithms respectively. Both the Full Orthogonalization 
Method (FOM) and the Generalised Minimal Residual 
method (GMRES) use long recurrences. GMRES minimizes 
the residual at each iteration. FOM minimizes the error. 

Thanks to the structure of the matrix ~
,Tm m+1 , the least-

squares problem on the right-hand side of (20) can be solved 
appropriately using a Givens QR factorization. Numerically 
stable implementations of Givens rotations for complex 
variables are available in recent BLAS I implementations. 
Numerical stability of the algorithm further requires the three-
terms recurrences for generating the basis to be implemented 
as coupled two-terms recurrences [12], [13]. 

Both the COCG and coupled two-terms QMR algorithms 
are susceptible to breakdown at two stages: in the Lanczos 
algorithm due to quasi-null basis vectors (breakdown of the 
first kind) and the linear system that defines the next iterate 
becoming singular (breakdown of the second kind). Both 
breakdowns have been observed in our numerical 
experiments. To overcome these breakdowns, a look-ahead 
strategy [14], [15], [16] needs to be incorporated into the 
algorithm. 
 
 

IV. PRECONDITIONING QMR 
 

To derive a preconditioned version of the QMR algorithm, 
we apply the QMR algorithm to the transformed system 
$ $ $Ax b=  where $A C ACT= − −1 , $x Cx= , $b C bT= −  and C  is 

such that the preconditioning matrix M  can be written as 
M C CT= . (22) 

TABLE I 
A TAXONOMY OF KRYLOV SUBSPACE  METHODS FOR COMPLEX SYMMETRIC 

SYSTEMS 
 Construction basis  
 Lanczos < , >T Arnoldi < , >H 
Ritz-Galerkin - FOM 
(Quasi) Minimal Residual QMR GMRES 
Petrov-Galerkin COCG - 



 

 

The preconditioner M  is thus complex and symmetric. We 
proceed in a way similar to Section 10.3 in [17]. Due to (21), 
the resulting algorithm requires in the m-th iteration step the 
normalization of the vector C vm

−1~ , obtained from the 

Lanczos process by < >, T -orthogonalizing $AC vm
−

−
1

1  with 

respect to { }C v C vm m
−

−
−

−
1

2
1

1,  and thus the computation of 

C vm
−1

2
~ . (23) 

For real matrices (23) can be rewritten in such a way that the 
matrix C  disappears, as follows 

C v v C C v v M vm m
T

m T m m T
− − − −= < > = < >1

2
1 1~ ~ , ~ ~ , ~

 (24) 
with M  defined in (22). For complex matrices however, we 
have that 

C v v C C v v M vm m
H

m H m m H
− − − −= < > ≠ < >1

2
1 1~ ~ , ~ ~ , ~ .

 (25) 

For the Symmetric Successive Over-Relaxation (SSOR) 
preconditioner, the factor C can be explicitly constructed. For 
other preconditioners, the need for explicitly constructing the 
factor C, can be avoided by defining other normalization 
weights in (21). 

 
V. COMPARISON OF QMR WITH COCG 

 
As COCG does not have a minimal residual property, its 

convergence behaviour can be irregular (Fig. 2 and Fig. 3). 
This behaviour prevents COCG to be numerically robust. One 
can prove the following estimate for the difference at step m 
between the iteratively updated residual rm 2  and the true 

residual b Axm− 2  (Section 5.3 in [6]): 

( )r b Ax m f A rm m
j m

j2 2 1 2
− − ≤

=
ξ max

,...,
 (26) 

where ξ  is the relative machine precision and ( )f A  is a 
function of matrix A . QMR on the other hand has a smoother 
convergence history. 

The overall number of iterations needed by the COCG and 
QMR algorithms to reach a prescribed tolerance is about the 
same (Fig. 2). This can be explained by taking a closer look 
to the linear systems that the COCG and QMR algorithms 
solve at each step m to determine ym . For the COCG and 
QMR algorithms, these linear systems only differ by an 
additional row in the QMR case. Details can be found in e.g. 
in Section 6.5.5 in [3]. 

 
VI. COMPARISON OF QMR WITH GMRES 

 
A natural question is by how much the quasi-minimization 

computed by QMR differs from the true minimization 
computed by GMRES. In Fig. 4 the convergence histories of 
SSOR-QMR and SSOR-GMRES are plotted for a 
representative test case, small enough to run a non-restarted 
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Fig. 2. Convergence histories of COCG (upper) and QMR (lower). 
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Fig. 3. Detail of the convergence histories of COCG (upper) and QMR 
(lower). 
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Fig. 4: Convergence histories of SSOR-QMR (upper) and SSOR-GMRES 
(lower). 



 

 

version of GMRES. From this figure it is concluded that, for 
the examples considered here, the quasi-minimization 
approximates the true minimization rather well. Here, QMR 
behaves like the optimal method. This means that efforts in 
speeding up computations should be directed towards finding 
more efficient (possibly multilevel type) preconditioners [18]. 

 

 
VII. COMPLEX VERSUS EQUIVALENT REAL SYSTEMS 

 
Splitting the real and imaginary parts of the complex 

system matrix leads to two possible equivalent real systems of 
double dimension [8] (Fig. 5). For the spectra of the matrices 
A*  and A**  the following properties hold: 

( ) ( ) ( )σ σ σA A A* = ∪  (27) 
and 

( ) ( ){ }σ λ λ σA R AA** = ∈ ∈2  (28) 

respectively (Fig. 5). Both the spectra for A*  and A**  are 
less favourable for the convergence of Krylov subspace 
iterative methods than the spectrum of the original complex 
matrix A. 
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Fig. 5. Comparison of the spectrum of the complex symmetric system matrix 
to the spectra of two equivalent real systems of double dimension. 
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Fig. 6. Outline and mesh of a three-phase transformer. 
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Fig. 7. Flux line plots of the three-phase transformer at two different time 
instants. 
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Fig. 8. Outline and mesh of an Induction motor. 
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Fig. 9. External circuit connection of the induction motor. 



 

 

VIII. PRACTICAL EXAMPLES 
 
A three-phase power transformer (Fig. 6) consists of high 

voltage windings (primary) and low voltage windings 
(secondary) Eddy current effects are neglected in the high 
voltage windings. The secondary windings consist of hollow 
copper conductors in which skin effect is not negligible. The 
primary is voltage driven. The secondary is connected to a 
resistive load. Fig. 7 shows the flux line plots of the magnetic 
field at two instants of time. 

A three-phase induction motor (Fig. 8) with 4 poles, 36 
stator slots and 34 rotor slots is computed under loaded 
condition. The stator end-windings and rotor end-rings are 
modelled by external electric impedances (Fig. 9). The stator 
windings are voltage-driven. A magnetic flux line plot is 
shown in Fig. 10. 

Table II compares the numbers of nodes, extra circuit 
equations and non-zero matrix elements for different 
discretizations of both models. Table III presents the number 
of iterationsteps of COCG, QMR and their preconditioned 
variants for the studied models. 

 
IX. CONCLUSIONS 

 
A Quasi Minimal Residual approach is used as Krylov 

subspace projection method to solve the sparse and complex 
symmetric matrices arising from low-frequency time-
harmonic magnetic finite element discretizations. QMR 
converges much smoother compared to COCG. The 

convergence rate of QMR approximates the one of GMRES, 
indicating that QMR is a valuable low-cost iterative method 
to solve the complex symmetric matrices of these 
discretizations. Further improvement should concentrate on 
the problem of preconditioning and on incorporating look-
ahead strategies to cope with breakdown. The methods are 
applied to electromagnetic problems of technical importance. 
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Fig. 10. Flux line plot of the induction motor. 
 

TABLE II 
SIZE OF THE CONSIDERED MODELS 

 Model Mesh 
nodes 

Circuit 
unknowns 

Number of non-
zeros in the matrix 

1 Transformer 5565 154 28882 
2 Transformer 17807 154 83817 
3 Induction motor 2857 69 12760 
4 Induction motor 10931 69 48614 

 
TABLE III 

NUMBER OF ITERATION STEPS OF THE PRECONDITIONED AND NOT-
PRECONDITIONED VERSION OF COCG AND QMR 

Model COCG SSOR-COCG QMR SSOR-QMR 
1 2985 1548 2975 1538 
2 3384 1666 3325 1638 
3 1188 1048 1184 1045 
4 2099 1657 2093 1652 


