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Abstract 
Electromagnetic field-circuit coupled models of induction machines give raise to linear systems with 
symmetric and indefinite system matrices. The sparse stiffness matrix of the finite element 
discretization is coupled to algebraic equations describing the external electric circuit connections. 
As solution techniques for the coupled systems, a variant of the Quasi Minimal Residual (QMR) 
method is compared to the Minimal Residual (MINRES) method. The experiment shows that QMR, 
which allows the use of an indefinite preconditioner, outperforms MINRES with a positive 
preconditioner. The latter solution strategies for the indefinite systems are compared to the Conjugate 
Gradient (CG) method applied to the positive definite Schur complements of the same systems. The 
different solution and preconditioning approaches are tuned to the particular electromagnetic 
application and are demonstrated by a realistic example. 

1 Introduction 
Expensive prototyping of electromagnetic devices in design and optimization procedures has largely 
been replaced by numerical simulation. Flexibility, reliability and speed are the major requirements 
for the simulation software. Such software is mostly based on the use of finite elements because of 
the complex geometries and non-linear material characteristics, typical for electrical power 
transducers. The working principle of a lot of electromagnetic devices relies on the interaction of an 
electric field with a magnetic field. Since both fields are linearly coupled by the Maxwell equations, 
the description of the coupled problem by one system matrix is particular attractive. In some cases, 
one of both fields is easily and to a sufficient accuracy described by a lumped parameter model, 
whereas the other field requires an entire 2D or 3D finite element discretization [1]. The differences 
in the natures and the discretizations of the fields yield a hybrid, symmetric and indefinite coupled 
system of equations. As the system has to be solved repeatedly in a transient simulation, it is 
important to pay attention to the particular properties of the system matrix and the choice of 
appropriate solvers and preconditioners. Indefinite systems of mixed formulations are also studied for 
models of other physical phenomena in [2] and [3]. 

2 Simulation of induction machines 
The working principle of an induction motor is based on the interaction of an electric field and a 
magnetic field. Alternating currents in the three-phase stator windings of an induction machine excite 
a rotating magnetic field in the air gap of the machine (Fig. 1). If the angular velocity of the rotor 
differs from the one of the rotating field, currents are induced in the short cut rotor bars. The 
interaction of the stator field and the rotor field gives raise to an electromagnetic torque which drives 
the rotor [4]. 
The simulation of induction machines involves the computation of the electric and magnetic 
behaviour. Because of the time-dependent excitation, the magnetic saturation of the iron and the 



 

 

motion of the rotor, a transient description is required. The magnetic flux distribution is strongly 
influenced by the presence of materials with a relative difference in magnetic permeability of a factor 
1000. The electric currents, on the other hand, only exist in the conductors. 
From the modelling point of view, a distinction is made between the solid rotor bars and stator 
windings. A solid conductor is a massive conducting piece of material. The voltage drop remains 
constant across the cross-section of the solid conductor. Because of the skin effect, however, the 
current density depends on the location in the conductor. A stranded conductor is the approximation 
for a winding. Due to the geometrical dimensions of the individual strands, skin effect is negligible. 
Therefore, the current density is constant along the cross-section of the conductor. The voltage drop 
is not the same for each wire. 
The long and cylindrical geometry of the machine that we consider, enables the use of a 2D model. 
The magnetic flux density ( )0,, yx BB=B  is then a vector in the 2D-plane whereas the electric 

voltage drop V∇  and the current density ( )zJ,0,0=J  are perpendicular to this plane. The 
resistances and inductances of the stator end-windings and the rotor end-ring have a strong impact on 
the behaviour of the machine [5]. Also, the machine may be operated by a non-sinusoidal source or 
invertor supply. These effects are considered as lumped parameters of an external electric circuit 
coupled to the 2D magnetic field model. 
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Fig. 1: Geometry of an induction motor. 

3 Derivation of the mathematical and numerical model 

3.1 Magnetic model 
The wave length of the considered electromagnetic phenomena exceeds the dimensions of the 
applications. Based on this observation, one can simplify the Maxwell equations to obtain the 
following system of equations for magnetodynamic fields. A distinction is made between solid 
conductors and stranded conductors [6]. 
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zA  is the z-component of the magnetic vector potential A  defined by the relation AB ×∇=  where 
B  denotes the magnetic flux density. ν  and σ  are the reluctivity and the conductivity. l  is the 
length of the 2D model. A solid conductor is described by (1) and (3) as a function of the voltage 

solV , the current solI  and the admittance solG . A stranded conductor with tN  turns and a cross-
section str∆ , is described by (2) and (4) as a function of the current strI , the voltage strV  and the 
resistance strR . Eq. (1) and (2) are partial differential equations that have to be solved on the 
domain. Eq. (3) and (4) are integral relations representing the coupling between the magnetic field 
and the electric circuit. 

3.2 Discretization 
Equations (1)-(4) are discretized in space using linear triangular finite elements. The time 
discretization is the Galerkin time-stepping scheme ( 32=α ) with fixed time step t∆ . 

3.3 External circuit model 
A lumped parameter model is described by the Kirchhoff Voltage Law, the Kirchhoff Current Law 
and a branch current-voltage relation for each branch. Writing all possible equations yields an 
overdetermined system of equations. Furthermore, solid conductors and capacitors are voltage driven 
branches. Their currents Ti  are described by branch relations of the form 

( )AvGi TTTT f+=  (5) 
in terms of the unknown voltages Tv , the magnetic vector potentials A  and the admittance matrix 

TG . Similarly, the voltages Lv  across stranded conductors and inductors are described by 
( )AiRv LLLL f+=  (6) 

in terms of unknown currents Li , the magnetic vector potentials A  and the resistance matrix LR . 
The restrictions due to the hybrid nature of the circuit elements and their arbitrary interconnection are 
resolved by applying the graph theory to the circuit [7]. From here on, it is assumed that it is possible 
to put all voltage driven branches in a tree and all current driven branches in the associated co-tree. 
The more general case is pointed out in [7]. The topological treatment is represented by fundamental 
incidence matrices. The fundamental cutset matrix [ ]LD1D =  represents the incidences of the 
circuit branches to the fundamental cutsets. The fundamental loop matrix [ ]1BB T=  represents the 
incidences of the circuit branches to the fundamental loops [8]. 
An independent set of Kirchhoff Laws is obtained by considering the cutset equations 

0=+ TLL iiD   (7) 
and the loop equations 

0=+ LTT vvB .  (8) 

3.4 Magnetic-electric field-circuit coupling 
Substituting the discrete equivalents of (5) and (6) in (7) and (8), adding the discretized versions of 

(1)-(4) and scaling by 
l

t∆α=χ  leads finally to the coupled system 
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K , R , TQ  and LP  follow from discretizing (1), (2), (3) and (4) [7]. The vector load  depends on 
the known voltage and current sources and the solution at the previous time step [7]. 

4 Solution of the matrix problem 

4.1 Properties 

The matrix is symmetric thanks to the graph property T
TL BD −=  [8] and the symmetrization by χ . 

The finite element matrix block t∆+α RK  arises from a finite element discretization of the 
parabolic and elliptic partial differential equations (1) and (2) and is positive definite. TG  and LR  
are positive diagonals because of the assumption made in Section 3.3. In the general case, TG  and 

LR  are symmetric positive definite matrices. The cutset equations preserve the positive definiteness 
of the FEM matrix part. The loop equations are responsible for a negative definite diagonal block. 
The cutset equations correspond to the unknown voltages and are directly related to the magnetic 
vector potentials by the law of Faraday-Lenz. The loop equations, corresponding to the unknown 
currents, introduce a duality with respect to the magnetic vector potentials. The indefiniteness of the 
coupled system is related to this physical duality. An appropriate congruence transform and 
Sylvester’s law of inertia revail that the number of negative eigenvalues equals the number of loop 
equations. The benchmark model in Fig. 2 has one cutset equation and one loop equation. The matrix 
may be ill-scaled due to the relative differences between the diagonal blocks in the mixed 
formulation. 
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Fig. 2: Spectrum of a benchmark system matrix. 

4.2 Solving the indefinite system 
Preconditioned Krylov subspace solvers are very effective for large and sparse systems of equations 
[9]. Appropriate algorithms for symmetric, indefinite systems are the Minimal Residual (MINRES) 
and the Symmetric LQ (SYMMLQ) methods [10]. Both methods are based on the Lanczos process 



 

 

for symmetric matrices. The coefficient matrix of the preconditioned system has to be symmetric. 
Furthermore, the minimization in MINRES is performed using the norm associated with the inner 
product to which the coefficient matrix is symmetric. This is only possible if the preconditioner 
defines a norm and is thus symmetric positive definite. 
A better convergence of the Krylov subspace method is expected when both the positive and the 
negative eigenvalues, are approximated in the preconditioner. To benefit from an indefinite 
preconditioner, MINRES is replaced by a variant of the Quasi-Minimal Residual (QMR) method for 
symmetric, indefinite systems [11]. The Lanczos bi-orthogonalization process in QMR simplifies in 
the case of a symmetric preconditioner. The true minimization of MINRES is replaced by a quasi-
minimization. The resulting algorithm requires essentially the same amount of work and storage as 
MINRES. This approach enables the application of either which symmetric preconditioner to the 
indefinite system. 

4.3 Positive definite alternative 
The negative eigenvalues can be avoided by using voltage unknowns only. The Schur complement of 
the loop equations is positive definite and corresponds to a full nodal analysis [1]. Here, the Schur 
complement of the entire circuit part is applied. Consider the partitioning of the indefinite system (9): 
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The Schur complement 
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is positive definite. The elimination of the circuit unknowns cause a significant fill-in of the finite 
element matrix part. For medium sized problem, already, the memory resources are unsufficient and 
the matrix-vector product in the Krylov subspace solver becomes unacceptable expensive. The 
matrix-vector product can be performed implicitly using a factorization of C . The system is solved 
by the Conjugate Gradient (CG) method. The lack of a good preconditioner for S  is a disadvantages 
of this approach. It is possible to apply a good preconditioner for t∆+α RK  to the Schur 
complement as well. In the numerical experiments, an Algebraic Multigrid (AMG) [12] defined for 

t∆+α RK , is used as a preconditioner for S . 

5 Example 
The induction motor of Fig. 1 is a four-pole 45 kW motor with as rated values for the efficiency, the 
speed, the voltage and the current, 93.5%, 1470 rpm, 660 V and 49.5 A respectively. A transient 
simulation has to reflect results of the stationary behaviour of the machine. The fundamental 
frequency and higher harmonics due to saturation and slotting are of interest. The relative motion of 
the rotor and stator slots determines the time-step. Two periods are simulated with 2048 time steps in 
total. The geometry is discretized by 6010 first-order finite elements. The topological treatment of the 
external electric circuit yields 354 circuit equations considered in the entire system matrix. The 
magnetic flux lines for one position and time instant are drawn in Fig. 3. 
Fig. 4 shows the convergence of QMR and GMRES with a Jacobi preconditioner compared to 
MINRES with the Jacobi preconditioner of which all negative diagonal elements are made positive. 
The effect of the indefinite preconditioner used with QMR outstands the true minimization of 
MINRES. In Fig. 5 the convergence of CG applied to the Schur complement is shown for several 
choices of preconditioners. 



 

 

 
Fig. 3: Magnetic flux lines of the induction motor. 

0 200 400 600 800 1000
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

MINRES

QMR

error

Iteration step  
Fig. 4: Convergence of QMR compared to MINRES. 
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6 Conclusions 
The finite element discretization of a coupled magnetic-electric field-circuit transient simulation 
yields a symmetric indefinite system matrix. The Quasi-Minimal Residual method with a 
preconditioner considering the few negative eigenvalues, performs better than the Minimal Residual 
approach. An alternative is implicitly solving the positive definite Schur complement by the 
Conjugate Gradient method. Numerical experiments are performed on an induction motor model. 
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