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Abstract 
 
The Harmonic Balance Finite Element Method (HBFEM) is an alternative for 
time-consuming transient analysis i f only the steady-state solution is of interest.  
However, when used for realistic large-scale problems, such as simulation of the 
current redistribution in saturable transformers subject to a large spectrum of 
harmonic currents and voltages, practical implementation aspects have to be 
considered.  An alternative derivation of the method in the complex frequency 
domain, leading to a block decomposition, is presented.  Its implementation as a 
Gauss-Seidel iteration or a Jacobi-method, allowing a parallel algorithm, is 
discussed.  A method to perform adaptive relaxation of the non-linear algorithm 
is presented.  Effects associated with the representation of the material 
characteristic are studied.  The computational effort in the outer non-linear 
iteration loop is minimised using FFT-algorithms, allowing to use adaptive 
relaxation methods to stabilise the overall procedure. 
 
1 Introduction 
 
The HBFEM method1,2 presents an interesting method to obtain the steady-state 
solution of a non-linear electromagnetic field problem directly.  Transient time-
stepping computations can lead to steady-state solutions as well , but may be 
computationally expensive if start-up transients with large time-constants are 
studied.  Often the describing ordinary differential equation has a stiff nature, 



requiring small time steps and computationally expensive methods.  The motion 
of bodies, inherent to the problem, can be modelled relatively easil y when 
compared to the HBFEM3.  However, if the number of field unknowns and/or the 
number of harmonics to calculate are large, the size of the system matrix of the 
complete HBFEM method may become too large to be handled by a single 
computer system.  This is usually not the case if the same problems are solved by 
a transient approach.  To allow larger problem sizes, a limited parallel 
computation model for the HBFEM has been suggested4. 
 
2 The HBFEM Method in the complex frequency domain 
 
2.1 Derivation of the HBFEM 
 
2.1.1 Original HBFEM 
 
Magnetic fields are generally described by a partial differential equation using 
the magnetic vector potential, being a time-dependent function, as υ  is the 
reluctivity for saturable materials. 
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In the original HBFEM1,2, the vector potential and the reluctivity are written 
as a truncated Fourier series with unknown coefficients for the sinus and cosinus 
terms, reflecting the periodicity of the steady state solution.  Only one 
fundamental frequency is used, but DC-terms may occur.  Evaluating this in the 
equation (1), numerous product terms arise in the absorption term of the PDE, 
leading finall y to a large finite element equation. 
 
2.1.2 Complex HBFEM 
 
An alternative derivation consists of applying the Fourier Transform to eqn (1).  
The product is replaced by a convolution operation on the complex spectra: 
 

{ } { }( ) { } { }sJ
t

A
A F

F
F*F =

∂
∂−∇⋅∇ συ  (3) 

 
Since the functions are assumed periodically in time and real-valued, the 

spectra consist of sets of weighted Dirac functions, conjugate in the frequency 
domain.  It is not necessary here to limit the number of fundamental frequencies 
to one.  Several fundamental frequencies can be possible e.g. when deali ng with 
PWM-modulated waveforms.  This yields a set of coupled partial differential 
equations, the number of equations equals the number of occurring spectral 
components: 
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If only saturation is assumed and hysteresis effects are neglected, the 

number of components of the material series is 2N.  It is possible to derive the 
complete coupled version of eqn (4), being a complex equivalent of the system 
obtained by the traditional HBFEM. 
 
2.2 Decomposition of the Complex HBFEM 
 
The set of partial differential equations (4) can be decomposed in a natural way 
into a decoupled system.  In realistic devices, the DC-component of the material 
spectrum is several orders larger than the double frequency components.  This is 
not necessaril y the case for the magnetic spectrum.  The convolution product 
term including υ0, multiplied by Ah, is therefore often dominant.  The other terms 
can be assumed as locall y constant, and moved to the right-handside, yielding N 
decoupled equations.  These off-diagonal convolution terms on the right-
handside can be regarded as "fictitious current sources", forcing the flux to by-
pass strongly saturated regions: 
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The equations are discretised on triangular finite element meshes, yielding a 

set of matrix equations.  If a Newton-Raphson method is applied, the matrices 
are Jacobians and the unknowns become corrections. 
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Theoretically, the meshes may be different.  For instance, local differences 

may be interesting when skin effects are present.  The off-diagonal convolution 
terms are calculated after projection of the solution on the appropriate mesh.  The 
same procedure is required if different types of elements are used. 
 
3. Linear and Non-linear Iterative Solution Algorithms 
 
The solution of the set of equations (5), contains three nested iterative loops.  At 
first, the individual l inear systems have to be solved.  Next, the iteration loop at 
block level has to be considered and finally, the non-linear iteration loop is to 



converge.  If error estimation and mesh refinement is used, a fourth iteration loop 
can be added. 
 
3.1 Linear system solving 
 
The matrix equations to be solved are complex, therefore requiring an eff icient 
complex iterative solver.  The numerical properties of symmetric complex 
systems indicate to be more favourable with respect to iterative solvers than their 
double-sized real-valued counterparts5.  The decomposition into multiple linear 
systems with off-diagonal eddy current terms in one single frequency is 
advantageous from the numerical point of view.  The higher the frequency ωh 
becomes, the more unfavourable the numerical properties of the system become.  
If different frequencies were mixed as in the complete HBFEM, a preconditioner 
would never be as effective as for the decomposed equations. 
 
3.2 Block iteration loop 
 
3.2.1 Sequential Block Gauss-Seidel 
 
An obvious choice would be the sequential solution of the individual systems in 
eqn (5).  The obtained solutions are immediately used in the consecutive 
equations as formulated in eqn (6).  Obviously, the block algorithm is sequential.  
The old solution can be immediately overwritten with the newly obtained one. 
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3.2.2 Parallelisable Block Jacobi 
 
The updates are made after solving all systems.  Theoretically, this method 
converges slower than the Gauss-Seidel method, but is more stable.  However it 
must be noted that this has never appeared to be a problem in the studied models.  
The iteration process can be formulated: 
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This method can be paralleli sed.  The simultaneous solution procedures of 

the individual matrix systems can be performed on different computational units.  
A comparable paralleli sation for the traditional HBFEM is made in reference 4, 
where it is suggested to set the number of li near iteration steps to a fixed number.  
Here, however, it is suggested to let the linear iterative solvers converge to an 
equal relative norm of their residuals.  For higher frequencies, the convergence is 
generally slower.  Meanwhile, the already converged sub-process can transfer its 



solutions to the master process, proving to minimise the overall time spent for 
communication and synchronisation.  By using multi-casting, if available, the 
time necessary for transmitting the new set of solutions to the slave processes is 
limited.  The norm of the difference between two consecutive solutions is used 
as a stopping criterion for the block iteration loop. 
 
3.3 Non-linear Iteration loop including Adaptive relaxation 
 
3.3.1 Non-linear iteration 
 
In the non-linear iteration loop, the material parameters of the finite elements 
covering the sub-domains with saturable materials have to updated – whether a 
Newton-Raphson or a substitution based non-linear algorithm is applied.  These 
material updates have to be performed in the time-domain.  Therefore an Inverse 
Fourier Transform is required.  The most efficient implementation to perform 
this, is the (I)FFT on the double-sided spectrum.  After the update, another FFT 
per saturable element is necessary to obtain the material coefficient series.  The 
number of points in the FFT should be a multiple of two and depends on the 
spreading of the spectral components in the series.  Suppose one fundamental 
frequency exists in N harmonics, and only odd harmonics are non-zero.  The 
(I)FFT’s are then 4N-points.  Then the number of floating point operations for M 
elements approximately is: 
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In principle, the non-linear and linear iteration loops could be exchanged6, 

but in that case, the number of calculations given by eqn (9) would increase the 
calculation time. 
 
3.3.2 Efficient Adaptive Relaxation 
 
With strongly non-linear materials, as e.g. laminated iron, immediate use of the 
newly obtained solution leads to divergence if large sets of harmonics are 
calculated and far extrapolation of the material characteristic would be 
necessary.  Therefore, (under)relaxation is required.  The relaxation factor has to 
change in the different non-linear iteration loops, using adaptive correction.  In 
order to estimate the locall y optimal damping factor, it can be assumed that it 
should minimise the non-linear residual over the total solution vector, the norm 
being 

1
• , 

2
•  or ∞• .  This residual can be used as a stopping criterion. 
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Different strategies can be used to find the minimum of the residual.  It is 

possible to find a global minimum over the global solution vector (all harmonics 
considered), but since the different solution components may vary some orders 
of magnitude, this can be basicall y reduced to the search of the minimum for the 
dominant component.  Using a relative norm with different denominators for 
each partial solution may help, but it is diff icult to find a good denominator.  It is 
possible to use the solution itself, though it is not situated in the same vector 
space as the residual vector(s).  The right-handside lies in that vector space, but 
is not interesting in realistic problems, where usually many entries are filled in 
with zeros or small numbers.  This yields very small norms in the denominator. 

It appears to be better to look for the minimum of every partial residual 
(every harmonic) separately.  These minima are usually not found for the same 
α(j) and thus certain components may be slightly overrelaxed in some iteration 
steps.  However, this proves to be a robust divergence-free method for strongly 
non-linear materials. 
 
3.4 Mesh Adaptation 
 
The final iterative loop consists of the error estimation and the adaptation (h-, p- 
or hp-refinement) of the mesh or possible multiple meshes for the sub-problems.  
The error can be estimated, based on the total solution or on the partial solutions.  
This is still subject of further research.  The projection of the previous solution 
on the altered mesh, proves to be an excellent starting solution. 
 
4. Implementation 
 
4.1 Implementation aspects 
 
4.1.1 Linear loops 
 
The described complex HBFEM method has been implemented in the in-house 
FEM software environment ‘Olympos’ 7.  There, first order triangular finite 
elements are applied.  The possibilit y to extend the models with circuit equations 
has been implemented.  Fast mesh adaptation and projection algorithms are 
available. 

The numerical algorithm used for the iterative solution of the linear systems 
(blocks) is QMR, preconditioned by SSOR.  This algorithm proves5 to be very 
fast and robust for the occurring complex symmetric systems.  In the beginning 
of the non-linear process, often almost homogeneous systems have to be solved 
e.g. when the right-handsides contain only contributions of saturation harmonics, 
qnd the equations are still very damped.  For these types of systems, 
(SSOR)QMR converges fast when compared to other iterative solvers such as 
the complex (SSOR)CG. 



 
4.1.2 Non-linear loops 
 
The determination of the relaxation factor in the non-linear loop can be 
implemented in an effective way.  The considered relaxation factors are 
calculated by αj=βκ with β=0.5 and κ a natural number.  Every calculation of a 
residual requires a non-linear material update, the composition of the matrix 
system and a matrix-vector product.  To minimise the amount of time necessary 
for searching the relaxation factor with the minimal residual, the number of 
residual calculations can be limited to three: β*αj, αj and αj/β with αj the 
relaxation factor of the previous step.  The minimal residual is usually to be 
found in the covered interval, since the non-linear process converges smoothly, 
when appropriate damping is applied. 
 
4.1.3 Round-off errors 
 
The HBFEM proves to be sensitive to round-off of errors, since the interacting 
solution components may vary several orders of magnitude.  If these round-off 
errors become too large, the smoothness of the convergence at block iteration or 
at non-linear level gets lost.  However, this can be detected by comparing with 
an estimated convergence criterion.  In this case, it is the best to keep the 
previous solution and stop the iteration. 
 
4.2 Parallelisation aspects 
 
If the block-level iteration uses the Jacobi algorithm, paralleli sation of the entire 
approach is possible.  For implementation, the PVM8-library ("parallel virtual 
machine") is used.  The parallel machine consists of a cluster of computation 
units (CU’s), with distributed memory, e.g. a group of workstations connected 
over a LAN.  A master process controls the calculation, assigning a spectral 
component to each CU.  When each CU finished its task, it transmits its solution 
vector to the master.  The master then checks the convergence criterion and if 
needed, broadcasts the total solution vector to the slave processes on the CU’s.  
Due to the slight differences in computation time, for reason of numerical 
properties, there is an overlap in the communication of the partial solution to the 
master and the computations of the slower converging processes and not much 
time is lost.  The time lost in the broadcast phase is larger, but eff icient 
implementations exist to perform multi-casting over a LAN, instead of peer-to-
peer communication. 
 
4.3 Source Modelling 
 
The voltage or current source driving the device has to be modelled in the 
frequency domain.  Two options exist to model the complex source values, 
appearing on the right-handside. 
 



4.3.1 Truncated Fourier Series 
 
If the periodic waveform can be represented by a known Fourier Series, this 
series may be truncated.  The equivalent of this operation is the application of a 
low-pass filter to the waveform, leading to the Gibbs phenomenon with 
overshoots.  Such an overshoot may lead to severe errors since it can drive the 
model into a non-existing state of deep saturation, hereby causing large errors in 
the saturation harmonics. 
 
4.3.2 Data Sampling 
 
An alternative not suffering from overshoots is based on data sampling in the 
time domain.  On these samples (or measurement samples), an FFT has to be 
performed to obtain the spectral components.  In this case, it cannot be avoided 
that aliasing occurs, thereby increasing the source components at the highest 
frequencies, when compared to the physical reality.  In general, this does not 
influence the algorithm as is the case with overshoots.  The use of anti-aliasing 
filters re-introduces moderate overshoots. 
 
4.4 Material Characteristic Representation 
 
The calculation process is also influenced by the representation of the non-linear 
magnetic saturation characteristics.  Spline interpolated reluctance curves, based 
on manufacturer supplied data, sometimes lack local smoothness, especiall y in 
the linear region, giving rise to non-existing higher saturation harmonics in the 
calculated fields.  These occur even in the beginning of the non-linear calculation 
and require stronger relaxation, leading to longer computational times.  
Analyticall y interpolated expressions such as polynomials are smoother and 
perform better. 
 
5. Application 
 
The complex HBFEM is applied to a single-phase transformer, subject to a 
squarewave voltage.  The voltage harmonics are determined using an FFT.  The 
flux is triangular shaped, with the top of the triangle reaching into the saturation 
region of the material characteristic, causing the magnetising current to be 
triangular shaped and having locally high peak values.  This model is calculated 
up to the 15th harmonic, considering only the odd harmonics.  Figure 1a contains 
graphs of the flux magnitude near a saturated corner in which the round-off 
effect due to saturation is seen.  The saturation harmonics up to the 15th order in 
the current are plotted in Figure 1b.  Figure 2 shows the first three component 
fields of the solution. 

The time required to compute this model is roughly distributed in 40% for 
the non-linear algorithm (residual calculations) and 60% for the (block) linear 
solving algorithm in case in case of sequential implementation.  This can be 
reduced to an 80% / 20% distribution if the parallel implementation is used. 
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a) flux magnitude b) magnetisation current 
Figure 1.   Time evolution of B and Iµ. 

 

   
a) fundamental  b) 3rd harmonic c) 5th harmonic 

Figure 2.   Set of solutions obtained from the application of the 
complex HBFEM on a single-phase transformer model. 

 
6. Conclusions 
 
The implementation of a complex version of the HBFEM method for large-scale 
FEM-simulation of non-linear electromagnetic devices is discussed and 
compared with the complete HBFEM method.  A parallel implementation is 
derived.  A four-level nested iteration process is explained, including block 
iteration and the adaptively relaxed non-linear loop.  Practical implementation 
aspects such as the determination of the relaxation factor, the effect of round-off 
errors, the choice of the linear solver and the use of PVM are studied.  Finally, 
the application of the method to a transformer is shown to demonstrate the 
feasabili ty of this approach at an example out of the engineering practice. 
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