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Abstract

The Harmonic Balance Finite Element Method (HBFEM) is an aternative for
time-consuming transient analysis if only the steady-state solution is of interest.
However, when used for redlistic large-scale problems, such as smulation of the
current redistribution in saturable transformers aubject to a large spedrum of
harmonic aurrents and voltages, practical implementation aspeds have to be
considered. An alternative derivation of the method in the complex frequency
domain, leading to a block decompasition, is presented. Its implementation as a
GaussSeidd iteration or a Jacobi-method, allowing a parale algorithm, is
discussd. A method to perform adaptive relaxation of the non-linear algorithm
is presented. Effeds associated with the representation of the materid
characteristic ae studied. The cmputationa effort in the outer non-linea
iteration logp is minimised using FFT-algorithms, alowing to use adaptive
relaxation methods to stabilise the overall procedure.

1 Introduction

The HBFEM method™ presents an interesting method to obtain the steady-state
solution of a non-linear eledromagnetic field problem diredly. Transient time-
stepping computations can lead to steady-state solutions as well, but may be
computationally expensive if start-up trangents with large time-constants are
studied. Often the describing ordinary differential equation has a giff nature,



requiring small time steps and computationally expensive methods. The motion
of bodies, inherent to the problem, can be modelled relatively easily when
compared to the HBFEM®, However, if the number of field unknowns and/or the
number of harmonics to calculate ae large, the size of the system matrix of the
complete HBFEM method may become too large to be handled by a singe
computer system. Thisisusually not the @seif the same problems are solved by
a transient approach. To dlow larger problem sizes, a limited parale
computation model for the HBFEM has been suggested”.

2 TheHBFEM Method in the complex frequency domain

2.1 Derivation of the HBFEM
2.1.1Origina HBFEM
Magnetic fields are generally described by a partia differential equation using

the magnetic vedor potential, being a time-dependent function, as v is the
reluctivity for saturable materials.
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In the original HBFEM™?, the vector potential and the reluctivity are written
as atruncated Fourier series with unknown coefficients for the sinus and cosinus
terms, refleding the periodicity of the steady state solution. Only one
fundamental frequency is used, but DC-terms may occur. Evaluating thisin the
equation (1), numerous product terms arise in the absorption term of the PDE,
leading finaly to alarge finite dement equation.

2.1.2 Complex HBFEM

An aternative derivation consists of applying the Fourier Transform to egn (1).
The product is replaced by aconvolution operaion on the complex spectra
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Since the functions are asaimed periodically in time axd real-valued, the
spedra consist of sets of weighted Dirac functions, conjugate in the frequency
domain. It is not necessary here to limit the number of fundamental frequencies
to ane. Several fundamental freqierciescan be possble e.g. when deali ng with
PWM-modulated waveforms. This yields a set of coupled partial differentia
equations, the number of equations equals the number of occurring spedral
components:



O E@iuhi 0A % jw,oA =J,,, h=0QN (4)

If only saturation is assumed and hysteresis effects are negleded, the
number of components of the material seriesis 2N. It is possble to derive the
complete coupled version of egn (4), being a complex equivalent of the system
obtained by the traditional HBFEM.

2.2 Decomposition of the Complex HBFEM

The set of partial differential equations (4) can be decomposed in a natural way
into a dewupled system. In redlistic devices, the DC-component of the material
spedrum is eweral orders larger than the double frequency components. This is
not necessarily the @ase for the magnetic spedrum. The @nvolution product
term including uo, multiplied by A, istherefore often dominant. The other terms
can be asuumed as locally constant, and moved to the right-handside, yielding N
decoupled equations. These off-diagonal convolution terms on the right-
handside can be regarded as "fictitious current sources', forcing the flux to by-
passstrongly saturated regions:
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The equations are discretised on triangular finite dement meshes, yielding a
set of matrix equations. If a Newton-Raphson method is applied, the matrices
are Jacobians and the unknowns become @rredions.
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Theoretically, the meshes may be different. For instance, local differences
may be interesting when skin effects are present. The off-diagonal convolution
terms are calculated after projedion of the solution an the gppropriate mesh. The
same procedure isrequired if different types of elements are used.

3. Linear and Non-linear Iterative Solution Algorithms

The solution of the set of equations (5), contains threenested iterative loops. At
first, the individual linea systems have to be solved. Next, the iteration loop at
block level has to be considered and finally, the non-linea iteration logp is to



converge. |If error estimation and mesh refinement is wsed, afourth iteration loop
can be added.

3.1Linear system solving

The matrix equations to be solved are complex, therefore requiring an efficient
complex iterative solver. The numericd properties of symmetric complex
systemsindicae to be more favourable with resped to iterative solvers than their
double-sized real-valued counterparts’. The decmposition into multiple linear
systems with off-diagonal eddy current terms in one single frequency is
advantageous from the numerical point of view. The higher the frequency w,
becomes, the more unfavourable the numericd properties of the system become.
If different frequencies were mixed asin the awmplete HBFEM, a preconditioner
would never be as effective as for the decomposed equations.

3.2Block iteration loop
3.2.1 Sequential Block Gauss-Seidel

An obvious choice would be the sequential solution of the individual systemsin
egn (5). The obtained solutions are immediately used in the @nseautive
equations as formulated in egn (6). Obviously, the block algorithm is sequential.
The old solution can be immediately overwritten with the newly obtained one.
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3.2.2 Parallelisable Block Jacobi

The updates are made after solving all systems. Theoreticaly, this method
converges dower than the GaussSeidel method, but is more stable. However it
must be noted that this has never appeaed to be a probem in the studied models.
The iteration processcan be formul ated:
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This method can be pardlelised. The simultaneous solution procedures of
the individual matrix systems can be performed on different computationa units.
A comparable parallelisation for the traditional HBFEM is made in reference *,
whereit is suggested to set the number of linea iteration steps to afixed number.
Here, however, it is siggested to let the linea iterative solvers converge to an
equal relative norm of their residuals. For higher frequencies, the mrvergerceis
generaly dower. Meanwhile, the dready converged sub-processcan transfer its



solutions to the master process proving to minimise the overall time spent for
communication and synchronisation. By using multi-casting, if available, the
time necessary for transmitting the new set of solutions to the dave processes is
limited. The norm of the difference between two conseautive solutions is used
as a stopping criterion for the block iteration loop.

3.3 Non-linear Iteration loop including Adaptive relaxation
3.3.1 Non-linear iteration

In the non-linea iteration logp, the material parameters of the finite dements
covering the sub-domains with saturable materials have to updated — whether a
Newton-Raphson or a substitution based non-linea algorithm is applied. These
materia updates have to be performed in the time-domain. Therefore an Inverse
Fourier Transform is required. The most efficient implementation to perform
this, is the (I)FFT on the double-sided spectrum. After the update, another FFT
per saturable dement is necessary to obtain the material coefficient series. The
number of points in the FFT should be a multiple of two and depends on the
spreading o the spedral components in the series.  Suppose one fundamental
frequency exists in N harmonics, and only odd harmonics are non-zero. The
(DFFT’'sare then 4N-points. Then the number of floating point operationsfor M
elements approximately is:

flops=2M % Iog(4N) (9)

In principle, the non-linea and linea iteration loaps could be exchanged®,
but in that case, the number of calculations given by egn (9) would increase the
calculation time.

3.3.2 Efficient Adaptive Relaxation

With strongly non-linea materials, as e.g. laminated iron, immediate use of the
newly obtained solution leads to dvergence if large sets of harmonics are
caculated and far extrapolation of the material charaderistic would be
necessry. Therefore, (under)relaxation is required. The relaxation factor has to
change in the different non-linea iteration logps, using adaptive corredion. In
order to estimate the locally optimal damping factor, it can be asaumed that it
should minimise the non-linea residud over the total solution vedor, the norm

being [+, [+, or [[., Thisresidual can be used asastopping criterion.
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Different strategies can be used to find the minimum of the residual. It is
posshbleto find aglobal minimum over the global solution vedor (all harmonics
considered), but since the different solution components may vary some orders
of magnitude, this can be basically reduced to the search of the minimum for the
dominant component. Using a relative norm with different denominators for
each partial solution may help, but it isdifficult to find agood denominator. Itis
posshle to use the solution itself, though it is not situated in the same vedor
space as the residual vedor(s). Theright-handside lies in that vedor space but
is not interesting in realistic problems, where usually many entries are filled in
with zeros or small numbers. Thisyields very small normsin the denominator.

It appeas to be better to look for the minimum of every partia residual
(every harmonic) separately. These minima are usualy not found for the same
a? and thus certain components may be slightly overrelaxed in some iteration
steps. However, this proves to be a robust divergence-free method for strongly
non-linear materials.

3.4 Mesh Adaptation

Thefind iterative loop consists of the aror estimation and the adaptation (h-, p-
or hp-refinement) of the mesh or posshle multiple meshes for the sub-probems.
The aror can be estimated, based on the total solution or on the partial solutions.
Thisis dill subject of further research. The projedion of the previous solution
on the altered mesh, provesto be an excdl ent starting solution.

4. Implementation

4.1 Implementation aspects
4.1.1 Linear loops

The described complex HBFEM method has been implemented in the in-house
FEM software ewironment ‘Olympos’. There, first order triangular finite
elementsare plied. The posshility to extend the modelswith circuit eguations
has been implemented. Fast mesh adaptation and projection algorithms are
available.

The numerical algorithm used for the iterative solution of thelinea systems
(blocks) is QMR, preconditioned by SSOR. This agorithm proves’ to be very
fast and robust for the occurring complex symmetric systems. In the beginning
of the non-linea process often almost homogeneous systems have to be solved
e.g. when the right-handsides contain only contributions of saturation harmonics,
gnd the euations are still very damped. For these types of systems,
(SOR)QMR converges fast when compared to ather iterative solvers such as
the complex (SSOR)CG.



4.1.2 Non-linear loops

The determination of the relaxation factor in the non-linea loop can be
implemented in an effective way. The nsidered relaxaion factors are
calculated by a;=p" with =0.5 and k a natural number. Every calculation of a
residual requires a non-linea material update, the cmposition of the matrix
system and a matrix-vedor product. To minimise the amount of time necessary
for seaching the relaxation factor with the minima residual, the number of
residual calculations cen be limited to three B*a;, a; and a/f with o; the
relaxation factor of the previous g2ep. The minimal residual is usualy to be
found in the mvered interval, since the non-linea process converges snoothly,
when appropriate damping is applied.

4.1.3 Round-off errors

The HBFEM proves to be sensitive to round-off of errors, since the interacting
solution components may vary several orders of magnitude. If these round-off
errors become too large, the smoathnessof the convergenceat block iteration or
at non-linea level gets lost. However, this can be detected by comparing with
an estimated convergence citerion. In this case, it is the best to keep the
previous solution and stop the iteration.

4.2 Par alldlisation aspects

If the block-level iteration uses the Jacobi algorithm, parall disation of the entire
approach is possble. For implementation, the PVM?-library ("paralld virtual
machine"') is used. The paralle machine mnsists of a cluster of computation
units (CU’s), with dstributed memory, e.g. a group of workstations conneded
over a LAN. A master process controls the alculation, assgning a spedral
component to each CU. When each CU finished its task, it transmitsits solution
vector to the master. The master then cheds the @mnvergence citerion and if
neealed, broadcasts the total solution vector to the slave processes on the CU'’s.
Due to the dight differences in computation time, for reason of numericd
properties, there is an overlap in the communication of the partial solution to the
master and the omputations of the slower converging processes and not much
time is lost. The time lost in the broadcast phase is larger, but efficient
implementations exist to perform multi-cagting over a LAN, instead of peer-to-
peea communication.

4.3 Sour ce Modelling
The voltage or current source driving the device has to be modelled in the

frequency domain. Two options exist to model the cmplex source values,
appeaingon the right-handsde.



4.3.1 Truncated Fourier Series

If the periodic waveform can be represented by a known Fourier Series, this
series may be truncated. The equivalent of this operation is the application of a
low-pass filter to the waveform, leading to the Gibbs phenomenon with
overshoats. Such an overshoat may lead to severe arors snceit can drive the
model into a non-existing state of deep saturation, hereby causing large erorsin
the saturation harmonics.

4.3.2 Data Sampling

An dternative not suffering from overshoads is based on data sampling in the
time domain. On these samples (or measurement samples), an FFT has to be
performed to obtain the spedral components. In this case, it cannot be avoided
that aliasing occurs, thereby increasing the source @omponents at the highest
frequencies, when compared to the physical reality. In generd, this does not
influence the algorithm as is the @se with overshoats. The use of anti-aliasing
filters re-introduces moderate overshods.

4.4 M aterial Characteristic Representation

The @lculation processis also influenced by the representation of the non-linea
magnetic saturation characterigtics. Spline interpolated reluctance airves, based
on manufacturer supplied data, sometimes lack local smoathness espedally in
the linear region, giving rise to non-exigting higher saturation harmonics in the
calculated fields. These ocaur even in the beginning o the non-linear cdculation
and require stronger relaxation, leading to longer computational times.
Analytically interpolated expressons sich as polynomials are smoather and
perform better.

5. Application

The omplex HBFEM is applied to a single-phase transformer, subject to a
squarewave voltage. The voltage harmonics are determined using an FFT. The
flux istriangular shaped, with the top of the triangle reaching into the saturation
region of the material characteristic, causng the magnetising current to be
trianguar shaped and having locally high peak values. This model is cdculated
up to the 15" harmonic, considering anly the odd harmonics. Figure lacontains
graphs of the flux magnitude nea a saturated corner in which the round-off
effed due to saturation is ®en. The saturation harmonics up to the 15" order in
the airrent are plotted in Figure 1b. Figure 2 shows the first three @mponent
fields of the solution.

The time required to compute this mode is roughy distributed in 40% for
the non-linea algorithm (residua calculaions) and 60% for the (block) linea
solving algorithm in case in case of sequential implementation. This can be
reduced to an 80% / 20% distribution if the parall & implementation is used.
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Figure2. Set of solutions obtained from the applicaion of the
complex HBFEM on a single-phase transformer model.

6. Conclusions

The implementation of a complex version of the HBFEM method for large-scale
FEM-smulation of non-linea eledromagnetic devices is discussed and
compared with the cmplete HBFEM method. A paralld implementation is
derived. A four-level nested iteration process is explained, including block
iteration and the adaptively relaxed non-linea loop. Practical implementation
aspeds siuch as the determination of the relaxation factor, the effect of round-off
errors, the choice of the linea solver and the use of PVYM are studied. Finally,
the application of the method to a transformer is sown to demonstrate the
feasabili ty of this approach at an example out of the engineeing practice
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