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Abstract: A weak coupling between magnetostatic and elasticity Young modulus and Poisson modulus. The magnetic energy

equations is derived from energy considerations. The coupling term
results directly into a finite element expression for the nodal
electromagnetic forces, which can be used as source terms for an
elasticity or vibration analysis. The relative contribution of the
stator’s modal shapes in the deformation excited by this force
distribution is calculated. As an example, the coupling is used to
analyse the vibrational behaviour of a 6/4 switched reluctance
machine.
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I. INTRODUCTION

The electromagnetic field inside an electrical machine and its
mechanical structure will determine the machine’s behaviour
in producing vibrations and noise. The link between the
magnetic and the mechanical analysis is the electro-
magnetical force exerted by the magnetic field on stator and
rotor. To take stator defomlations into account, a local force
formulation is needed. A finite element based expression for
local electromagnetic forces is presented. In the finite
element analysis, forces can be calculated at every node of
the mesh and this force distribution can be used as an input
(source terms) to the subsequent mechanical analysis. From
the modal shapes of the stator and the force distribution,
mode participation factors can be determined (as a function
of rotor position), indicating the relative importance of the
modal shapes towards the machine’s vibrations and noise.
This analysis is illustrated by example of a 6/4 switched
reluctance machine (SRM).

II. THE MAGNETO-MECHANICAL SYSTEM

Both magnetostatic and elasticity finite element methods
are based upon the minimisation of an energy function. The
elastic energy stored in a body with deformation a (Xi=Xi,o+ui,

Yi=Yi,O+vi > ai=[ui ‘iIT)‘s [11

where K is the mechanical stiffness matrix, determined by

geometry and material properties p, E and v, i.e. density,
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stored in an unsaturated system with magnetic vector
potential A is [2]

where M is the system’s magnetic ‘stiffness’ matrix,
determined by its geometiy and the magnetic permeability~.
Considering the similar form of(1) and (2), it is investigated
whether the following system of equations can support a
coupled magneto-mechanical analysis:

(3)

where T and R are the magnetic and mechanical source term
vectors respectively. R represents forces other than those of
electromagnetic origin. The coupling matrices C and D can
be evaluated considering the total energy in the system:

E= U+ W=~a TKa+~AT MA. (4)

The partial derivatives of E with respect to the unknowns
[A a]’ give the equations of the total system (3) with T=O,
R=O:

1 ~i2K(A)a=o
~= A4A+7a —

13A ‘

1 Ttii’’f(a)A=o
~= Ka+TA —

da “

The coupling terms C and D are thus given by

111.ELECTROMAGNETIC FORCES

(5)

(6)

(7)

(8)

Using the coupling terms C and D, it is possible to solve
the matrix system (3) directly. Solving this strongly coupled
system requires an iterative solver that can handle a non-
sparse asymmetrical system, e.g. GMRES. Therefore it is
useful to examine the weakly coupled version of (3), since
this will lead to an expression for the electromagnetic nodal



forces, and the equation solvers for sparse symmetric systems IV. EXAMPLE: 6/4 SRM

can still be used. Rearranging the second equation in (6) to

~a=_~AT auf(a)
— A = Fe,,,

2 au
(9)

reveals a means to calculate the nodal electromagnetic forces
FC. from magnetic vector potential A and the partial
derivative of the magnetic stiffness matrix M with respect to
deformation a. This expression for FClncan also be found
directly by deriving magnetic energy W with respect to
displacement:

==-:[+A’M’]Fe,,, = -‘w (lo)

where the unknowns A have to be considered constant. If it is
assumed that the material properties E, v and p do not depend
on the vector potential A (e.g. neglecting magnetostriction),
then the coupling term D vanishes. The system (3) is
uncoupled into

(11)

since FC~replaces the coupling term C. Equation (11) can be
solved using a simple cascade procedure and its validity is
tested against analytical models, as presented in the full
paper.

The derivation iM4/i3a is illustrated briefly in the full

paper for the case of first order triangular elements. In this
abstract, suffice it to give the results. For the magnetic
element matrix

1
M;=—

[
bibi + Cici

4pA .1 (12)

with permeability p, element area A and the familiar shape
function coefficients a, =XNj–XNz, b, =Y2-J+, c1=x-x2, the
partial derivative with respect to u, is

Rather than calculating the energy difference between two
finite element solutions, the partial derivative represents
more accurately the essence of virtual work [3]. There is no
need for a second magnetic finite element solution and no
numerical derivations are performed.
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A. ,Vodul Forces

The geometry of the 6/4 SRM is shown in Fig. 1a. The coil
system indicated is current excited and generates the
magnetic field shown in Fig. lb. This magnetic field is used
to evaluate the local electromagnetic forces FC~given in Fig.2
for the stator only. For this rotor position, the machine
produces torque due to the (net) forces alongside the stator
teeth. The forces pointing inwards are larger than the torque
generating forces, but only cause the stator to deform.

B. Mode Shapes and Modal Participation

Using the stator’s mechanical matrices K (stiffness), M.,
(mass) and C,,,(damping), the eigenvectors and eigenvalues
of the mechanical structure can be found. These constitute
the stator deformation mode shapes, some of which are
shown in Fig.3. Table 1 lists the first 20 modes with their
frequencies and their (normalised) participation factor for the
force distribution under consideration. The mode
participation factor can be determined using [4]

ri = fi~$i(xi)’~(xj)

/ i

(14)

Fig. 1. a) Geometry of the 6/4 SRM aod b) equipotential lines for excitation
according to a).

Fig. 2. Nodal force distribution calculated from the magnetic field.



where $i(xj) is the displacement of the $’ mode shape at the j’”

node, p(xi) is the force at the,i’1’node and m, is the generalised

mode mass.

In Table 1, several modes are paired because they

represent deformation patterns that differ an angular shift

only, e.g. modes (1,2) are shifted over 90°, modes (4,5) over

45° and modes (9,10) over 22.5°.

From Table 1 it is seen that the 8t1’ mode shape, the

uniform shrinking and expanding of the stator structure, has

the largest contribution and determines the greater part of the

vibrational behaviour of the machine. The squaring modes

(9, 10) have a substantial contribution and also the ovalization

modes (4,5) are clearly present, The triangular modes 6 and 7

have no significant contribution since there is no triangular

symmetry in the forces. Note that the contribution of the 3‘~

mode shape, the rigid body rotation, is a measure for the
torque of the SRM: this value can be compared for different
rotor positions to indicate the machine’s torque efficiency and
its susceptibility to torque ripple.

Table 1. Participation factor of modal sliapes in force distribution

I mode I frequency (Hz) I ,mode tmrticipation I
number factor ~norma]ised)

1,2 rigid translations 0.0270 ‘

3 rigid rotation 0.0227

4,5 334.9 0.4676

6 783.8 0.0209——

b 7 1028.1 0.0005

L 8 [311,3 0.5810 I

74X.97 I on

I 19 70 I 457(1 Ii I ().2=.42
I ... -. .. ---- , . . ..- .- -1

The force distribution in Fig.2 is only a snapshot: a full
modal analysis has to consider the force distribution for
different rotor positions, corresponding to different time steps
and coil excitations. When the participation factors ri are

known for different rotor positions (and time instants), the set
of equations

;i + 2<i0iii + ‘?~i = ri(~)

can be solved for all significant
generalised co-ordinates q, as

(15)

modes $i, giving their
a function of time

(6.),= eigenfrequency, <,= modal damping factor). When the
mechanical damping C,,, is assumed to be proportional, the
system of equations (15) can be uncoupled and solved
separately [4].

Note that solving the set of equations (15) in the time
domain, eliminates inaccurate assumptions on the frequency
behaviour of the local electromagnetic forces.
516
A
is

,..— ~.,,
,,-

r‘L+((y .7 )

‘.. <,,P=, p’//
/

~t,, ““.. —_,,,

@

Fig. 3. Selected modal shapes for the 6/4 SMR stator structure, The mode
numbers are assigned according to ascending frequency.

V. CONCLUSION

weak coupling between magnetic and mechanical analysis
derived, leading to a finite element based expression for

the nodal electrom-agnetic forces. The modal shapes and their
participation factor can be calculated for different rotor
positions. From these values, stator resonances and the noise
frequency spectrum can be anticipated at the design level.
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