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Abstract: Due to less computational expenses, a time-harmonic
approach is often preferred over a transient approach to calculate the
steady-state behaviour of induction machines. However the
computation ti]me of the transient approach with a one-step time-
stepping scheme is significantly reduced by using a combined time-
harrnonic - transient approach and by varying the parumeter which
determines the difference scheme with time,
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I. INTRODUCTION

Although three-dimensional finite element calculations of
induction machines belong to the present state of
possibilities, two-dimensional calculations are still preferred
to obtain an acceptable solution in a reasonable time. As the
calculation method has to consider induced currents,
saturation and end-effects, two approaches are widely used:
the time-harmonic and the transient approach.

A. Time-Harmonic Approach

The magnetic vector potential A is assumed to vary

sinusoidal with time at the frequency f or angula frequency o)
and is represented by its complex phasor notation. The
correct induced rotor currents are obtained by applying the
net frequency ~,1 and multiplying the conductivity in the

rotor by the slips [1, 2].

Stator: V.(v VA) - j 2n,~l UA = -./, (1)

Rotor: V .(vVA) - j 2rt_fj,(.so)A = -./, (2)

v is the reluctivity, o the conductivity and ./S the source

current density. A complex Newton-Raphson method using
effective reluctivity curves considers the saturation [1, 3],
while the end-effects are taken into account by coupling an
external lumped parameter model with the finite element
model [2, 4, 5].
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B. Transient Approach

The magnetic vector potential is obtained by using a one-
step time-stepping scheme [6, 7].

(aK+;)A,+((l-~)K-:)A,-,
(3)

=(aT, +(1-a)Tk-1)

K is the element coefficient matrix, R the stiffness matrix,

‘rk_, and Tk are the source vectors respectively at t= tk_l

and t=tk =tk_l+ fit.Different difference schemes are

obtained by changing the value of the parameter a in the
recurrence relation between Ak and Ak_l The time-

stepping scheme is started at t = to and A. is assumed to be

zero. Saturation and end-effects are taken into account by the
same techniques as in the time-harmonic approach.

Fig. 1 shows a one pole pitch finite element model with
9178 elements of a 400 kW squirrel cage induction machine
with a two-layer winding. Four periods (128 time steps per
period) are simulated using a time-stepping scheme with

ct = 2/3 (Galerkin method). A voltage-driven locked rotor

test is taken as example because no motion effects are
involved. Fig. 2 shows the stator currents through the four
parts of the stator windings that appear in the finite element
model of Fig. 1. The number of periods and thus the
computation time of the transient approach is significantly
reduced by using a combined time-harmonic - transient
approach.

Fig 1. Outlineand material labels of a one pole pitch finite element model
of a squirrelcage inductionmachine.
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Fig. 2. Transient simulation of the stator currents in the finite element
model for four periods (Galerkin method).

II. COMBINED TIME-HARMONIC - TRANSIENT
APPROACH

A. Start Solution

Instead of assuming the start solution A. to be zero, a

time-harmonic solution is used [5]. This method can also be
used for the circuit unknowns X [4].

(4)

A ~H and X ~H are the solutions of an equivalent time-

harmonic problem. If the meshes of the time-harmonic and
the transient problem differ, efficient mesh projection
methods can be used [8]. Fig. 3 shows again the stator
currents and Fig. 4 the stator voltages. Only two pel-iods are

simulated with the Galerkin method ( a = 2/3) to obtain the

steady-state behaviour of the induction machine. As can be
seen in these figures, it is sometimes sufficient to simulate
less than two periods and the simulation can be terminated
based on the periodicity of the circuit unknowns.
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Fig. 3. Combined time-harmonic - transient simulation of the statot’currents
for two periods (Ga]erkin method).
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Fig. 4. Combined time-harmonic - transient simulation of the stator voltages
for two periods (Galerkin method).

B. Stability and Accuracy

The choice of the value of the parameter a in (3)
influences the stability and the accuracy of the numerical

results. The recurrence scheme is stable for a > 1/2 .

Oscillations are not prevented but they do not grow out of

control. The Crank-Nicolson method ( a = 1/2 ) gives on top

a second order accuracy with time and is therefore a good
choice. Unfortunately, in combination with field-circuit
coupling peculiar effects may occur. Fig. 5 shows the stator
voltages over the four parts of the stator windings in the
finite element model. In this context, the term ‘stability
paradox’ is used [9] and is advised to choose the value of the
parameter a closer to 1 than to 1/2
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Fig. 5. Combined time-harmonic - transient simulation of the stator voltages
(Crank-Nicolson method).



As the transient method is function based, i.e. all
parameters are described by a function description and the
actual value is calculated with a function evaluator before
assembling the coefficient matrix, it is possible to vary the

value of the parameter ci with time (Fig. 6). Starting with a
value of 1, the value is slowly decreased (slope-function) to a
value of 0.6. This corresponds to an error reduction in the

stator voltages by 1/3 in each step. It is now possible to use a

one-step time-stepping scheme with a value of the parameter

a closer to 1/2 than to 1. The steady-state behaviour of the

the induction machine is obtained as fast and accurate as
possible. Fig. 7 shows again the computed stator voltages.
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Fig. 6, Variation of the value of the parameter a in the one-step time-
stepping scheme with time.
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Fig. 7, Combined time-harmonic - transient simulation of the stator voltages

(parameter a varies with time).
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III. CONCLUSION

Although the ever increasing computation power of
computers, a transient approach using a one-step time-
stepping scheme is still a time consuming task. The total
computation time is significantly reduced by using a
combined time-harmonic - transient approach. Less than two
periods have to be simulated to obtain the steady-state
behaviour of an induction machine. The simulation can be
terminated based on the periodicity of the circuit unknowns.
The time needed for the time-harmonic calculation is
negligible and efficient mesh projection can be used if the
meshes of the two approaches differ. Due to the function

based approach, the parameter cx in the one-step time-
stepping scheme is varied with time. Starting with a value of
1 (high error reduction at the beginning), the value is slowly

decreased to a value closer to 1/2 to obtain a steady-state

solution as fast and accurate as possible.
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