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 Abstract — Transformers and chokes carr ying currents 
or iginating from non-linear loads often contain harmonics 
causing additional heating of the device.  A calculation scheme 
to model the eddy currents causing the hot spots by means of 
FEM-methods and post-processing is presented.  I t is 
developed to analyse transformers and chokes connected to a 
supply with a quasi-sinusoidal voltage feeding non-linear loads 
such as rectifiers.  The method is ill ustrated at an appli cation 
in which the current redistr ibution and its consequences inside 
a foil winding transformer carr ying current harmonics is 
studied. 
 

I.INTRODUCTION 
 

 In electrical power systems an increasing amount of 
power electronic systems is introduced.  These systems exist 
in every size ranging from lighting, switched power supplies 
for off ice equipment, frequency converters for adjustable 
speed drives and huge rectifiers for electrothermal 
applications.  These loads behave non-linearly towards the 
power net.  Even with a sinusoidal voltage supply, their 
currents are non-sinusoidal, but still periodicall y in steady 
state.  Hence they contain other spectral components, the 
current harmonics, frequencies which are a multiple of the 
fundamental supply frequency. 
 The harmonic components cause a current redistribution 
inside transformer or choke windings of the foil -type or 
parallel wires due to leakage fields and parasiti c inter-
winding-couplings.  These currents can cause internal hot-
spots damaging the device [1,2].  Its therefore important to 
be able to model the current and related heat source 
distribution in these device by means of numerical field 
simulations, already in the design stage. 
 

II .THE EFFECTS OF HARMONICS ON TRANSFORMERS 
 

A. Transformer Loss Mechanisms 
 
 The heat sources in a transformer can be divided in two 
groups. 
1. The iron loss: the losses in the core of the device due to 

the changing magnetic flux.  This loss is approximately 
equal to the no-load loss if the resistance of the winding 
carrying the magnetising current can be neglected.  In 
commercial transformers this loss amounts a few percent. 

2. The ohmic losses: these losses are located in the current 
carrying windings.  They only occur under loaded 
conditions. 

The effect of power system harmonics with respect to the 
main loss mechanisms is discussed in the following sections. 
 

B. The Effect of Voltage Harmonics 
 
 Voltage harmonics influence the flux in the transformer.  
This is explained by the law of Faraday-Lenz (1).  This flux 
φ consists of the main part in the core φµ and a small leakage 
flux φσ. 
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with N1 the number of (primary) windings, R1 the 
neglectable winding resistance, i(t) the winding current and 
u(t) the supplying voltage. 
 The transformation of (1) into the frequency domain 
shows the relationship of the flux components and the 
voltage harmonics (2). 
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This equation shows that the magnitude of the flux 
components is inversely proportional to the order of the 
harmonics.  The effect of a higher order harmonic on the 
total flux is therefore small . 
 In reali stic situations, the magnitude of the voltage 
harmonics remains small compared to the fundamental 
component.  This is determined by the low internal 
impedance of most supply systems carrying current 
harmonics.  The individual voltage harmonics rarely exceed 
the level of 2-3%.  Therefore, only a slight error is made if 
the influence of the non-fundamental voltage components is 
neglected.  This is even more justified by the inversely 
proportional relation at higher frequencies.  Hence eq. (2) 
reduces to eq (3). 
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 (3) 

 



The consequence of (3) is that the no-load losses are caused 
by the fundamental voltage component only.  This is 
confirmed by measurements [1,2]. 
 
C.The Effect of Current Harmonics 

 
 For most power electronic systems, the amount of 
current harmonics is significant when compared to the 
fundamental component.  The additional ohmic losses in the 
windings due to the harmonic currents can be substantial. 
 The frequency dependence of the winding resistance has 
to be considered.  The skin depth δ in the winding material 
at a given frequency is given by (4).  For a commonly used 
conductor material such as copper it approximates 1 cm at 
50Hz. 
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Since the skin depth is inversely proportional to the square 
root of the harmonic order, the increased ac-resistance leads 
to a relatively higher ohmic loss for higher harmonics.  Foil 
windings and large solid windings are connected in parallel, 
often have dimensions which are larger than the skin depth, 
so a substantial current redistribution may occur in the 
transformer windings due to internal eddy currents.  Leakage 
fields and magnetic inter-winding couplings influence the 
current redistribution as well . 
 The eddy currents over the winding cross-sections cause 
an even worse unequal distribution of heat sources over the 
winding.  This leads to local hot spots.  Since the 
conductivity of the material is temperature dependent, the 
current density distribution is a function of the temperature 
field inside the winding, which itself is a function of the 
ohmic heat sources [3].  To obtain an accurate model of the 
effect of the current harmonics, the magnetic and thermal 
field have to be considered in a coupled way. 
 

II .FINITE ELEMENT MODELLING ASPECTS 
 

A.. Modelli ng the transformer 
 
 To model the magnetic field of a transformer, an eddy 
current problem has to be solved.  This is accomplished by 
using the finite-element method on a vector potential 
formulation ( B A= ∇ × ) of the problem.  The current 
distribution in the transformer is simulated in a 2D-cross 
section.  The equation describing the magnetic field is given 
by (5) [4], which is Ampère’s law after the introduction of 
the vectorpotential.  It is non-linear due to the saturation of 
the ferromagnetic core material. 
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 Strictly, the magnetic reluctivity is a periodic function in 
time.  However, it is common to approximate it by a function 
which is constant in time: ν(A).  This can be done without 
severely affecting the field solution and loss calculation of 
reali stic devices.  The level is saturation is determined by the 

field at fundamental frequency: ν(A1).  The transformation of 
(5) leads to a set of equations (6). 
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 This equation transformed into a functional and a 
descretisation with triangular finite elements is applied.  The 
minimisation of the functional leads the a large system of 
complex algebraic equations.  After the first equation is 
solved by a non-linear solver based on an adaptively damped 
successive substitution, combined with a (linear) equations 
solver (pre-conditioned iterative SSORCG solver), the linear 
equations for the higher harmonics are solved by the same 
linear equation solver. 
 The total rms current, necessary to obtain the ohmic loss 
is obtained by (7). 
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B. Load and Supply Modelli ng 
 
 The finite element model is extended with electrical 
circuit equations modelli ng the load and the supply.  The 
supply is modelled by a voltage source at fundamental 
frequency and an internal impedance.  At harmonic 
frequencies, the voltage source is replaced by a short circuit.  
The load, for instance a bridge rectifier, is modelled by a set 
of current sources, one for each harmonic frequency.  The 
magnitude and the phase of each current source are 
determined by the complex spectrum of the load current.  
This leads to a set of models to be solved, represented by 
figure 1. 
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Fig. 1.  Simulation models of the transformer, load and supply;  
the part inside the dotted line is modelled by the FEM equations. 

 
III .APPLICATION 

 
 The described method is applied to a design of a 4 kVA 
single-phase transformer.  The core is O-shaped and the 
winding is distributed symmetricall y over both legs of the 



core.  The inner low-voltage winding consists of a foil 
winding made of a copper sheet with a thickness of 0,5 mm.  
The height of the winding is 147 mm, so a current 
redistribution is li kely to appear.  The outer, primary 
winding is stranded and therefore the current density can be 
assumed uniformely distributed over the conductors’ cross-
sections.  Because of the symmetry in the design, only a 
quarter of the device is modelled.  The geometry of the 
quarter model is shown in figure 2.  To model the air around 
the transformer, an open boundary technique is used: from a 
certain distance, a 1/r-transformation is applied.  The air 
beyond that boundary, carrying a very low flux, is contained 
in the small region on the right. 

 

 
Fig.2. Geometry of the transformer design under study (¼ model). 

 

 The mesh used to calculate the magnetic field is 
constructed gradually by applying h-adaptation.  The error 
estimators used to select the elements to be refined are 
chosen in function of the desired result.  For the core region 
the error in the magnetic induction is estimated, whereas in 
the foil conductors the current density or the ohmic loss 
density is used.  This leads to the mesh shown in figure 3.  
The size of the largest element in the top of the foil 
conductors is about 0,2 mm.  Eq. 4 is used to estimate the 
maximum frequency of the current that can be modelled by 
these elements; this shows that up to the 20th harmonic could 
be modelled if the fundamental frequency is 50 Hz. 

 

 
Fig.3. Detail of the mesh used to calculate the magnetic field. 

 
 The load current applied is assumed to be produced by a 
single phase diode rectifier forming the net-side of a 
frequency converter driving an ac induction machine.  One 
period of the current and its amplitude spectrum are shown 
in figure 4.  This current was measured when the rectifier 
was fed by a quasi-sinusoidal voltage with less than 2% of 
voltage harmonics (mostly 5th and 7th harmonics). 
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Fig.4. Load current and its amplitude spectrum. 
 

 The magnetic FEM calculation results in a set of 
complex fields.  The curl of each of these fields gives the 
local B-field.  The real and imaginary part of the first 
equation of (6) after the curl operation is performed is shown 
in figure 5.  Since the source voltage is assumed to be the 
phase reference, the main part of the magnetic field is found 
in the imaginary solution due to the integration of eq. (3).  
The real part of the field is associated with the stray field 
and the internal eddy currents. 

 

  
(real part) (imaginary part) 

Fig.4. Field lines of the magnetic field solution at fundamental frequency. 
 

 The current density distribution is obtained as a post-
processing result of each calculated magnetic field.  Figure 5 
shows the density distributions of the fundamental 
component and a higher harmonic.  Two sets of curves are 
shown: the conductors on the right side (outside the core) 
and on the left side (inside the core). 



 As can be seen, that current density distributions differ 
significantly.  The oscillating current causes a higher density 
at the tops of the conductors.  The difference in the leakage 
fields inside and outside the core causes the profiles to be 
different.  The distance to the core is of importance since 
there are local differences in leakage flux. 
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(b) 

Fig.5. Profile of the current density distribution inside the foil conductors at the 
fundamental and the 15th harmonic;.  The x-axis starts at the middle of the 
conductor and runs upwards.  The solid line represents the 1st conductor (close 
to the core); the dashed line represents the 10th conductor. 
 

 The coupled thermal calculation is performed on a mesh 
covering only a part of the magnetic model.  The computed 
thermal field lines are shown in figure 6.  Some temperature 
profiles found in the foil conductors are shown in figure 7.  
In average, the conductors inside the core are hotter due to 
the moderate convective heat transfer there.  The conductors 
close to the core are more cool because of the resistive 
thermal path through the core, compared to heat path to the 
environment as seen from the outer conductor. 

 

 
 

Fig. 6. Thermal field lines of the tranformer model. 
 

 These results can be used to estimate the so-called ‘K-
factor’  that can be used as a derating factor or a design 
variable for transformers feeding non-linear loads. 
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Fig.7. Thermal profile of the foil conductors.  The dashed lines are the 
conducotrs inside the core; the solid lines are the conducotrs outside the core. 

 
V.CONCLUSION 

 
 A method to model the effect of current harmonics on 
transformers and chokes under a quasi-sinusoidal voltage is 
presented.  These currents are produced by non-linear loads 
fed by the transformer.  The saturation level in the core and 
the related iron losses can be determined from a voltage-
driven non-linear, FEM-simulation of the magnetic field 
component at fundamental frequency.  The ohmic losses for 
the fundamental current are obtained as well .  The harmonic 
components cause additional ohmic losses that are obtained 
from a current-driven, linear magnetic field simulation.  The 
combination of these post-processing results forms the input 
for a FEM thermal field model that is used to locate the hot-
spots in the design.  The results of this thermal model allows 
to adjust the electrical conductivities locall y in order to 
obtain a more accurately current distribution after a coupled 
problem iteration. 
 This approach is discussed at an example of a 
transformer design with foil conductors carrying a rectifier 
load. 
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