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Abstract — Coupled thermo-eledromagnetic problems are
non-linearly.  Therefore, the solution process involves an
iteration algorithm, often in a block iteration scheme. To
prevent divergence and accderate mnvergence a relaxation
scheme has to be applied. An adaptive shemeis proposed and
implemented in a coupled solver. The performance of the
methods used is demonstrated at an induction motor simulation
and an eledroheat application.

Index terms — Non-linear differential equations, relaxation
methods, finite dement methods, eddy currents, eledrothermal
effeds

I. INTRODUCTION

Eledric and magnetic field equations contain non-
linearly temperature dependent material properties.
Eledromagnetic heat sources are usually described by a non-
linear expresson. Therefore, a non-linear coupled solution
with the thermal field isrequired to smulate dedromagnetic
devices[1] accurately.

Different algorithms exist to oltain the cupled field
solution. Due to the non-linearities, the mnvergence @n
become troublesome [2]. Precautions in the form of
relaxation algorithms have to be taken to prevent divergence
numerical oscill ations and to accderate the mnvergence

II. COUPLING ASFECTS

Eledrostatic field equations may contain eedric
characteristics altering with the temperature. Dieledric
losses contributesto risesin the thermal field.

The oefficients in the different formulations of the
magnetic field equation may alter strongly under varying
temperature @nditions.
 The rductivity of cetain ferromagnetic materias

change at elevated temperatures; thiseffed is significant

in induction heating gpplications.
e The daracteristics of hard magnetic materias

(permanent magnets) shift with temperature.  The

performance daracteristic of permanent magnet
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machinesis influenced by this effed.

e The temperature dependence of the dedrica
conductivity of current carrying materials is important.

In non-static magnetic fields, eddy current effeds arise

influencing the cnductivity locally.

The heat sources asociated with the magnetic field are
joule losses caused by the driving currents and the induced
eddy currents. Iron losses ocaur in ferromagnetic materials
subjed to hysteresis phenomena.

Il. SOLVING THE NON-LINEAR COUPLED FEM-EQUATIONS

The following dscusson is limited to a coupled
magnetic-thermal field problem.  The methods can be
applied to eledric-therma problems or triple fields such as
magnetic/eledric/thermal field problems aswell .

A. Matrix System Buil ding

After discretisation on a finite-element mesh, the FEM
equations of the thermo-magnetic coupled <A, T>-problem
have the form (1). It is not necessary that the meshes on
which the magnetic subproblem and the thermal subproblem
are discretised are identical. For instance air regions
carrying leakage flux are replaced by a convedion boundary
in the therma model. The regions on which bath fields are
present, may be discretised by separate submeshes. In this
case, interface euations extending (1) describing the
projedion have to be added.
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The stiffnessmatrix contains two sparse diagonal blocks
consisting of the same terms as in the decoupled single field
problems. The entries of the termsin the off -diagonal blocks
and the right-hand side vedor are depending on the non-
linear iteration scheme.

* Piccard or successve substitution localy keegps the
coupling terms constant and hence they move to the
right-hand side, leaving off-diagona blocks fill ed with
zeros. The matrix equation can be cecomposed into two
sub-equations solved in successve steps.

*  Newton-Raphson: the matrix performs the function of
the Jacobian containing the partial derivatives. The off-
diagonal blocks are non-zero.



B. Block Iteration Schenmes

The obtained system can be solved by different linear
block iteration schemes. Hereafter the rredions in the
surrounding non-linear iteration loop are determined.

A complete system solution is appropriate to solve the
system arising when Newton-Raphson is applied. Dueto the
different nature of the equations, numerical difficulties may
ocaur.

For the block diagonal systems constructed in a Piccard
iteration, two solution schemes are possble. The first one
resembles the Jacobi iteration method to solve linear
systems. Both equations are solved simultaneously with
appropriate linear equation solvers before the updates are
determined.

The alternative is a Gauss Seidel-like iteration schemein
which the non-linear updetes for the next block to be solved
are determined as soon as the previous bl ock is solved.

If convergenceis obtained without relaxation, the Gauss
Seidel scheme nedls lessiteration steps. The Jacobi method
however has the posshility to perform the iterations for bath
subsets of equations in paralle. [f the information vedors
can be echanged fast enough, the solution speed of this
scheme is acceptable.

C. SoppngCriteria

A stopping criterion can be set in the L,- or L,-norm of
the difference of two conseautive solution vedors. Both
subproblem solutions can be used, depending on the
objedive of the @lculation. A weighted combination of the
relative norms of bath subproblemsis appropriate aswell.

111. ADAPTIVE RELAXATION
A. Relaxation Principle

The steps in the non-linear iteration logp are time-
intensive since severa large linear systems have to be
solved. By applying anappropriate relaxation scherme, some
of the steps can be avoided.

During the @mnvergence towards the solution, the values
of the non-linear coefficients may strongly oscill ate.
Posshly these ecursions jump to regions with phase
transitions and dscontinuous changes of the material
parameters. This numerical difficulty is avoided by damping
the system of equations.

A relaxation scheme with different coefficients for bath
subproblems is proposed. The intermediate solution vedor
used to kuild (1) for the next step i+1 is own in (2). The
vedors with the indices i+Y2 represent the last completed
solution. The vedors with index i are the previous complete
solution vedors.
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The parameters r; and r, ought to minimise the residuals
(3) [3], calculated in one matrix product and addition:
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These residuals can be alculated in a period of time
which is sgnificantly smaller than the solution of (1). Only
one sparse matrix-vedor product and a vedor addition are
required. However, since the non-linearly dependent matrix
edements have to be rebuild, the number of residual
calculationsislimited.

Theideal relaxation parameters minimise the generali sed
problem residual in (4).
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w; and w, are weighting factors. Sy and Sy are scaling
parametersto all ow the mmparison of bath residuals.

B. Determination of the Relaxation Parameters

The determination of the idea set of relaxation
parameters (ry, rp) is a bounded optimisation problem on its
own. Several methods exist to sdlve it [4], but the numbe of
residual calculations has to be restricted. For instance it is
posshble to construct a response surface through some points
in the (ry, ry)-plane. To oltain a reasonable good estimate,
a least a 3*3=9 evaluations have to be performed to
determine the location of a minimum, plus the evaluation in
this point.

C. A Fast Search Algorithm

Here, afast search algorithm is proposed in the form of a
marching scheme through the (ry, ry)-plane. Conseautive
sets of parameters are tested to find an estimate for the
minimum norm of the residual over the (r4, r,)-plane:

e The dart set is (ryo, r20), here fixed at ryo=r,0=1.0.
M(1.0, 1.0) is calculated. If overrelaxation is allowed, a
higher number can be dhosen.

* Next, two aher sets are tested: M(d;*ry, rp) and M(ry,
d>*rp) with d; and d; as given pre-set parameters. Every
time, the residual norm is calculated and compared to
the previoudy attained minimum, multiplied by a
penalty factor that augments at every double pace The
set evolving towards the lowest norm is retained as a
start set for the next iteration.

* Thereisamaximum for the number of tests.

In this way, a local minimum is found. In practice this
proves to be aimost always the global minimum as well for a
proper choiceof the parameters.



Fig. 1 shows the residual planes as they are found in the
first step of the smulation of an induction heating problem
starting from a zro-field initial solution in the magnetic
field and at constant temperature. The search agorithm
managed to locate the minimum according to (3) at (0.3,
0.9) in 10 steps, with d; and d, bath equal to 0.9.

(b)
Fig. 1. Resduas in the beginning d coupled smulation (a) L2-norm of
thermal residual vedor (b) L2-norm of the magnetic resdual vedor.

D. Sarting solution

The quality of the starting solution is very important in
non-linear iterations [5]. If noinformation isavailable, A% is
asaimed to be all zeros and T° equal to the thermal problem
solution without heat sources (usually equal to the ambient
temperature).

Better results are obtained when a multi-level approach
is employed. The projedion of the results of the @ culation
of coupled problems on a coarser - unrefined - mesh is an
interesting starting solution [5].

111 APRLICATIONS
A. Equaions

The proposed relaxation algorithm has been tested on
several smulations of thermo-eledromagnetic  coupled
problems. The applications $own here are typica 2D
coupled eddy current-temperature problems. The ejuation

used to model the magnetic field is the vedor potential in the
frequency domain formulation (5).

O(AT)D(A) - jwo(T)A= I (5)

If the problem is current driven, the right-hand side
term becomes temperature dependent aswell .

Js=0(T Vs (6)

The thermal equation is given by (7), in which the heat
sourceterms of (8) are found.

U (k(T )D (T )) =~Ujoute (A’ T) ~ Giron (A’ T) ~ Oexternal
()
(A,T) - ‘]rms(A)2

Qjoule W (88-)
Gron (AT)= f ()T x AAT)) (8b)

B. Test Models

The @lculated models are a voltage driven induction
motor extended with circuit equations and theoretica
inductive heating problems.

Due to the heating effeds in the induction motor, the
resistances of the stranded stator and solid rotor windings
change. This influences the magnitude and phase of the
stator currents and the distribution of the rotor currents and
hence the overall operation of the machine. The knowledge
of the dhange of the machine parametersis of importancefor
control purposes (Fig. 2).

Here, esterna 1S asumed 0.

Fig. 2. (a) time-harmonic solution d the magnetic field of an induction motor,
(b) isothermal lines.

In an induction heating problem, similar effeds are
found, but the temperature gradients are higher. The test
model consists of two circular solid bars of which one is
driven by an external source The seand bar is assumed to
be short-circuited. Skin effeds occur. Due to the short
distance proximity effeds are seen aswell.

C. Results



The model has been calculated without relaxation by
means of the Jacobi- and the GaussSeidd method. The
number of non-linear iterations is shown in Table 1. The
stopping criterion in al the aculations was st at

|Ti+1—Ti|| <10,

To illustrate the mnvergence properties, the thermal
starting solution is assumed to be equal to the ambient
temperature (20°C). In the first iteration step the magnetic
calculation results in high current densities snce the
conductor materials are ill ‘cold with a low resistivity.
The high density heat sources are ausing the temperature
rise swiftly. In the following iteration step, the @mnductors
are more resistive and hence carry lesscurrent. Thisleadsto
moderate heat sources and thus a lower temperature. In the
following steps this oscill ating behaviour continues. Fig. 3
shows the evolution of the temperature and current densities
in an induction heating problem.
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Fig. 3. Evolution d the temperature and the airrent densities. The graphs
show the diff erencewith the value after convergence

TABLE 1
COMPARISON OF # OF ITERATIONS FOR THE DIFFERENT ALGORITHMS
Algorithm Induction motor induction heating of a bar
Jacobi 16 85
Jacohi relaxed 11 56
GaussSeide 11 38
GaussSeidel relaxed 6 23

If relaxation is applied, lessiteration steps are required
(Table 1). Less overshoat occurs.  The numerica

oscill ations at the end of the iteration loop vanish. Fig. 4
shows the evolution of the L-error norm. The damping is
the strongest in the first steps, where the eror deaeases
faster than in the unrelaxed version. The aror evolution of
the first steps of the damped GaussSeide iteration shows
that initially a smaller step is taken, after which alarger step
diredly towardsthe final solution is chosen.
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Fig. 4. Evolutionof the L..-error norm for different iteration algorithms.

Initially the thermal residuals have a large impact to the
starting solution (Fig.1). In the first iteration stepsit can be
noticed that the residuals are very sensitive to the @rredions
of the magnetic solution. This can be eplained by the
squaring in (8a).

Further on during the cnvergence the dependence of
the onductivity in the magnetic equation becomes relatively
stronger and small damping factors are applied to limit the
oscill ations.

CONCLUSIONS

A generaly applicable adaptive relaxation algorithm to
calculate mupled eledromagnetic fields by means of the
finite dement method is presented. 1t can be applied to nan-
linear coupled systems that are solved as a complete system
or by means of a Jacohi- or GaussSeidel-like block iteration
algorithms.

The fast searching algorithm used to determine an
estimate for the minimum of the generalised problem
residual is proposed. The performance of the relaxation is
demonstrated by means of coupled field calculations on an
induction motor and eledrothermal problem.
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