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 Abstract — Coupled thermo-electromagnetic problems are 
non-linear ly.  Therefore, the solution process involves an 
iteration algor ithm, often in a block iteration scheme.  To 
prevent divergence and accelerate convergence a relaxation 
scheme has to be applied.  An adaptive scheme is proposed and 
implemented in a coupled solver.  The performance of the 
methods used is demonstrated at an induction motor simulation 
and an electroheat appli cation. 
 
 Index terms — Non-linear differential equations, relaxation 
methods, finite element methods, eddy currents, electrothermal 
effects 
 

I. INTRODUCTION 

 
 Electric and magnetic field equations contain non-
linearly temperature dependent material properties.  
Electromagnetic heat sources are usually described by a non-
linear expression.  Therefore, a non-linear coupled solution 
with the thermal field is required to simulate electromagnetic 
devices [1] accurately. 
 Different algorithms exist to obtain the coupled field 
solution.  Due to the non-linearities, the convergence can 
become troublesome [2].  Precautions in the form of 
relaxation algorithms have to be taken to prevent divergence, 
numerical oscill ations and to accelerate the convergence. 
 

II . COUPLING ASPECTS 

 
 Electrostatic field equations may contain electric 
characteristics altering with the temperature.  Dielectric 
losses contributes to rises in the thermal field. 
 The coeff icients in the different formulations of the 
magnetic field equation may alter strongly under varying 
temperature conditions. 
• The reluctivity of certain ferromagnetic materials 

change at elevated temperatures; this effect is significant 
in induction heating applications. 

• The characteristics of hard magnetic materials 
(permanent magnets) shift with temperature.  The 
performance characteristic of permanent magnet 

machines is influenced by this effect. 
• The temperature dependence of the electrical 

conductivity of current carrying materials is important.  
In non-static magnetic fields, eddy current effects arise 
influencing the conductivity locall y. 

 The heat sources associated with the magnetic field are 
joule losses caused by the driving currents and the induced 
eddy currents.  Iron losses occur in ferromagnetic materials 
subject to hysteresis phenomena. 
 

II . SOLVING THE NON-LINEAR COUPLED FEM-EQUATIONS 

 
 The following discussion is limited to a coupled 
magnetic-thermal field problem.  The methods can be 
applied to electric-thermal problems or triple fields such as 
magnetic/electric/thermal field problems as well . 
 
A. Matrix System Building 
 
 After discretisation on a finite-element mesh, the FEM 
equations of the thermo-magnetic coupled <A,T>-problem 
have the form (1).  It is not necessary that the meshes on 
which the magnetic subproblem and the thermal subproblem 
are discretised are identical.  For instance, air regions 
carrying leakage flux are replaced by a convection boundary 
in the thermal model.  The regions on which both fields are 
present, may be discretised by separate submeshes.  In this 
case, interface equations extending (1) describing the 
projection have to be added. 
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 The stiffness matrix contains two sparse diagonal blocks 
consisting of the same terms as in the decoupled single field 
problems.  The entries of the terms in the off -diagonal blocks 
and the right-hand side vector are depending on the non-
linear iteration scheme. 
• Piccard or successive substitution locall y keeps the 

coupling terms constant and hence they move to the 
right-hand side, leaving off-diagonal blocks fill ed with 
zeros.  The matrix equation can be decomposed into two 
sub-equations solved in successive steps. 

• Newton-Raphson: the matrix performs the function of 
the Jacobian containing the partial derivatives.  The off -
diagonal blocks are non-zero. 
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B. Block Iteration Schemes 
 
 The obtained system can be solved by different linear 
block iteration schemes.  Hereafter the corrections in the 
surrounding non-linear iteration loop are determined. 
 A complete system solution is appropriate to solve the 
system arising when Newton-Raphson is applied.  Due to the 
different nature of the equations, numerical diff iculties may 
occur. 
 For the block diagonal systems constructed in a Piccard 
iteration, two solution schemes are possible.  The first one 
resembles the Jacobi iteration method to solve linear 
systems.  Both equations are solved simultaneously with 
appropriate linear equation solvers before the updates are 
determined. 
 The alternative is a Gauss-Seidel-li ke iteration scheme in 
which the non-linear updates for the next block to be solved 
are determined as soon as the previous block is solved. 
 If convergence is obtained without relaxation, the Gauss-
Seidel scheme needs less iteration steps.  The Jacobi method 
however has the possibilit y to perform the iterations for both 
subsets of equations in parallel.  If the information vectors 
can be exchanged fast enough, the solution speed of this 
scheme is acceptable. 
 
C. Stopping Criteria 
 
 A stopping criterion can be set in the L2- or L∞-norm of 
the difference of two consecutive solution vectors.  Both 
subproblem solutions can be used, depending on the 
objective of the calculation.  A weighted combination of the 
relative norms of both subproblems is appropriate as well . 
 

III . ADAPTIVE RELAXA TION 

 
A. Relaxation Principle 
 
 The steps in the non-linear iteration loop are time-
intensive since several large linear systems have to be 
solved.  By applying an appropriate relaxation scheme, some 
of the steps can be avoided. 
 During the convergence towards the solution, the values 
of the non-linear coeff icients may strongly oscill ate.  
Possibly these excursions jump to regions with phase 
transitions and discontinuous changes of the material 
parameters.  This numerical diff iculty is avoided by damping 
the system of equations. 
 A relaxation scheme with different coeff icients for both 
subproblems is proposed.  The intermediate solution vector 
used to build (1) for the next step i+1 is shown in (2).  The 
vectors with the indices i+½ represent the last completed 
solution.  The vectors with index i are the previous complete 
solution vectors. 
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 The parameters r1 and r2 ought to minimise the residuals 
(3) [3], calculated in one matrix product and addition: 
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 These residuals can be calculated in a period of time 
which is significantly smaller than the solution of (1).  Only 
one sparse matrix-vector product and a vector addition are 
required.  However, since the non-linearly dependent matrix 
elements have to be rebuild, the number of residual 
calculations is limited. 
 The ideal relaxation parameters minimise the generali sed 
problem residual in (4). 
 

 ( )
T

T

A

A

S

R
w

S

R
wrrM ∞∞ += /2

2
/2

121,    (4) 

 
 w1 and w2 are weighting factors.  SA and ST are scaling 
parameters to allow the comparison of both residuals. 
 
B. Determination of the Relaxation Parameters 
 
 The determination of the ideal set of relaxation 
parameters (r1, r2) is a bounded optimisation problem on its 
own.  Several methods exist to solve it [4], but the number of 
residual calculations has to be restricted.  For instance, it is 
possible to construct a response surface through some points 
in the (r1, r2)-plane.  To obtain a reasonable good estimate, 
at least a 3*3=9 evaluations have to be performed to 
determine the location of a minimum, plus the evaluation in 
this point. 
 
C. A Fast Search Algorithm 
 
 Here, a fast search algorithm is proposed in the form of a 
marching scheme through the (r1, r2)-plane.  Consecutive 
sets of parameters are tested to find an estimate for the 
minimum norm of the residual over the (r1, r2)-plane: 
• The start set is (r1,0, r2,0), here fixed at r1,0=r2,0=1.0.  

M(1.0, 1.0) is calculated.  If overrelaxation is allowed, a 
higher number can be chosen. 

• Next, two other sets are tested: M(d1* r1, r2) and M(r1, 
d2* r2) with d1 and d2 as given pre-set parameters.  Every 
time, the residual norm is calculated and compared to 
the previously attained minimum, multiplied by a 
penalty factor that augments at every double pace.  The 
set evolving towards the lowest norm is retained as a 
start set for the next iteration. 

• There is a maximum for the number of tests. 
 In this way, a local minimum is found.  In practice this 
proves to be almost always the global minimum as well for a 
proper choice of the parameters. 



 Fig. 1 shows the residual planes as they are found in the 
first step of the simulation of an induction heating problem 
starting from a zero-field initial solution in the magnetic 
field and at constant temperature.  The search algorithm 
managed to locate the minimum according to (3) at (0.3, 
0.9) in 10 steps, with d1  and d2 both equal to 0.9. 
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Fig. 1.  Residuals in the beginning of coupled simulation (a) L2-norm of 
thermal residual vector   (b) L2-norm of the magnetic residual vector. 

 
D. Starting solution 
 
 The qualit y of the starting solution is very important in 
non-linear iterations [5].  If no information is available, A0 is 
assumed to be all zeros and T0 equal to the thermal problem 
solution without heat sources (usually equal to the ambient 
temperature). 
 Better results are obtained when a multi -level approach 
is employed.  The projection of the results of the calculation 
of coupled problems on a coarser - unrefined - mesh is an 
interesting starting solution [5]. 
 

III . APPLICATIONS 

 
A. Equations 
 
 The proposed relaxation algorithm has been tested on 
several simulations of thermo-electromagnetic coupled 
problems.  The applications shown here are typical 2D 
coupled eddy current-temperature problems.  The equation 

used to model the magnetic field is the vector potential in the 
frequency domain formulation (5). 
 
 ( ) ( )( ) ( ) sJATjATA =−∇∇ ωσυ ,   (5) 

 
 If the problem is current driven, the right-hand side 
term becomes temperature dependent as well . 
 
 ( ) ss VTJ σ=     (6) 

 
 The thermal equation is given by (7), in which the heat 
source terms of (8) are found. 
 
 ( ) ( )( ) ( ) ( ) externalironjoule qTAqTAqTTk −−−=∇∇ ,,

       (7) 
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 ( ) ( ) ( )( )TAAfTAqiron ,, ×∇= ω   (8b) 

 
B. Test Models 
 
 The calculated models are a voltage driven induction 
motor extended with circuit equations and theoretical 
inductive heating problems. 
 Due to the heating effects in the induction motor, the 
resistances of the stranded stator and solid rotor windings 
change.  This influences the magnitude and phase of the 
stator currents and the distribution of the rotor currents and 
hence the overall operation of the machine.  The knowledge 
of the change of the machine parameters is of importance for 
control purposes (Fig. 2). 
 Here, qexternal is assumed 0. 
 

  
Fig. 2.  (a) time-harmonic solution of the magnetic field of an induction motor, 
(b) isothermal lines. 

 
 In an induction heating problem, similar effects are 
found, but the temperature gradients are higher.  The test 
model consists of two circular solid bars of which one is 
driven by an external source.  The second bar is assumed to 
be short-circuited.  Skin effects occur.  Due to the short 
distance, proximity effects are seen as well . 
 
C. Results 
 



 The model has been calculated without relaxation by 
means of the Jacobi- and the Gauss-Seidel method.  The 
number of non-linear iterations is shown in Table 1.  The 
stopping criterion in all the calculations was set at 

41 10−
∞

+ <− ii TT . 

 To ill ustrate the convergence properties, the thermal 
starting solution is assumed to be equal to the ambient 
temperature (20°C).  In the first iteration step the magnetic 
calculation results in high current densities since the 
conductor materials are still ‘ cold’ with a low resistivity.  
The high density heat sources are causing the temperature 
rise swiftly.  In the following iteration step, the conductors 
are more resistive and hence carry less current.  This leads to 
moderate heat sources and thus a lower temperature.  In the 
following steps this oscill ating behaviour continues.  Fig. 3 
shows the evolution of the temperature and current densities 
in an induction heating problem. 
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Fig. 3.  Evolution of the temperature and the current densities.  The graphs 
show the difference with the value after convergence. 

 
TABLE 1 

COMPARISON OF # OF ITERATIONS FOR THE DIFFERENT ALGORITHMS 
Algorithm Induction motor induction heating of a bar 
Jacobi 16 85 
Jacobi relaxed 11 56 
Gauss-Seidel 11 38 
GaussSeidel relaxed 6 23 

 
 If relaxation is applied, less iteration steps are required 
(Table 1).  Less overshoot occurs.  The numerical 

oscill ations at the end of the iteration loop vanish.  Fig. 4 
shows the evolution of the L∞-error norm.  The damping is 
the strongest in the first steps, where the error decreases 
faster than in the unrelaxed version.  The error evolution of 
the first steps of the damped Gauss-Seidel iteration shows 
that initially a smaller step is taken, after which a larger step 
directly towards the final solution is chosen. 
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Fig. 4.  Evolution of the L∞-error norm for different iteration algorithms. 

 
 Initiall y the thermal residuals have a large impact to the 
starting solution (Fig.1).  In the first iteration steps it can be 
noticed that the residuals are very sensiti ve to the corrections 
of the magnetic solution.  This can be explained by the 
squaring in (8a). 
 Further on during the convergence, the dependence of 
the conductivity in the magnetic equation becomes relatively 
stronger and small damping factors are applied to limit the 
oscill ations. 
 

CONCLUSIONS 

 
 A generall y applicable adaptive relaxation algorithm to 
calculate coupled electromagnetic fields by means of the 
finite element method is presented.  It can be applied to non-
linear coupled systems that are solved as a complete system 
or by means of a Jacobi- or Gauss-Seidel-li ke block iteration 
algorithms. 
 The fast searching algorithm used to determine an 
estimate for the minimum of the generali sed problem 
residual is proposed.  The performance of the relaxation is 
demonstrated by means of coupled field calculations on an 
induction motor and electrothermal problem. 
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