The Classfication of Coupled Field Problems

Kay Hameyer, Johan Driesen, Herbert De Gersem and Ronnie Belmans
KATHOLIEKE UNIVERSITEIT LEUVEN, DEP. EE (ESAT), DIv. ELEN
Kardinad Mercierlaan 94, B-3001Leuven, BELGIUM

Abstract —The term “coupled problem” is used in many
numerical approaches and applications. Various coupling
mecdhanisms in a different context, such as field problems with
eledrical circuits, methods in a geometrically or physically
sense, couplingsin time and/or coupled methods to solve a field
problem, are meant with thisterm. For a proper classfication
of these problems and related solution methods a systematic
definition is proposed. It can be used in the evaluation and
comparison of solution methods for various problems.

It must be noted, that the proposed systematic is not
complete but can be extended and can serve as the starting
point classfying coupled problemsin general.

Index terms — coupled numerical

techniques, finite element method

field problems,

|. INTRODUCTION

A coupled system or formulation is defined on multiple
domains, possbly coinciding, involving dependent variables
that cannot be diminated on the equation level [1].

In the literature, this notion is often linked to a
distinguishing context of various physical phenomena or
methods, without further spedfication. This paper proposes a
clasdfication scheme, in which the numerical models,
meding the proposed definitions, can be put. This may lead
to the definition of a series of test problems for spedfied
coupled problems and solution algorithms. A classfication
scheme @n simplify the ammparison of the various examples
and approaches out of the literature, that solve such coupled
problems.

Next to "coupled problems' the terms of "weak-"
respedively "strong-coupled” will be discussed to propose a
more homogenous terminol ogy.

Il. CoupLED FIELDS

To start with a definition of standards or a clasdfication of
technical physical problems, the properties and the
interdependencies of such phenomena must be mnsidered.
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Fig. 1. Simplified structure of coupled field problems.

A general and simplified structure of considered field
problems can be taken from Fig. 1. Thelink between the
single fields is determined by material properties depending
on the crresponding field quantities. If the field blocks are
representing numerical methods to solve the single problem
in two dimensions, further couplings to external equations
such as eledrical circuits, magnetical or thermal equivalent
circuit models are posdble to complete the sheme.

The link between the drawn blocks is, in the mntext of
coupled problems and its numerical solution, a computer
model or method. The following question is, in which way
the physical phenomena have to be @mnsidered in an overall
solution. From the ideaof how to link the efeds numerically
a clasgfication of the methods can be performed.

I1l. STRONG AND WEAK COUPLING

In general, it is posshle to distinguish between the
coupled problem in two ways, its physical or in itsnumerical
nature. Very often acoupled iscall ed either

* strong or

* wesk.



In the physical sense, the strong coupling de<ribeseffeds
that are physically strongly coupled and the phenomena can
not numerically be treated separately. Respedively, the weak
coupling describes a problem where the dfeds can be
separated. The problem with this definition is obvious: If
coupled problems are studied, it is not very good known how
strong, respedively weak they are physically coupled; thisis
the requested answer expeded from the analysis of the
overall problem. For example if the material property
describing parameter are non-linearly depending on the field
guantities, the wupling, (strong/weak) can change with
varying field quantities and the field guantiti es are the result
of the analysis. Therefore, the definition of strong/weak
coupling should be cosen with resped to the numerica
aspeds instead to their physical nature. Choosing for the
numerical aspeds, it is possble to have a combined
strong/weak coupling of field problems. This means that the
strategy of coupling can vary during the solution process

Numerically strong coupling is the full coupling of the
problem describing equations on matrix level. The ejuations
of al involved and modded effeds are solved
simultaneoudly. This implies, that the cmupling terms are
inserted in the wefficient matrix aswell.

The numerically weak coupled problem is understood as a
cascade algorithm, where the mnsidered field problems are
solved in successve steps and the wupling is performed by
up-dating and transferring the field depending parameters to
the other field definition before solving again.

Since the problems cannot be distinguished by means of
elimination, an bi-diredional influence e«ists. The
sensitivity of a sub-problem to changes of the variables of the
studied problem can differ strongly. It is difficult to quantify
a threshold to separate bath groups and therefore, the
separation may be @nsidered as somewhat subjedive.

In thisresped, the time mnstants of the sub-problems play
an important role. Usually the thermal and mechanical time
constants are several orders larger when compared to the
eledromagnetic ones. So an a short term, the problem with
a larger time mnstant can be mnsidered as weak coupled.
But this is not trueif the stationary solution isof interest.

IV. COUPLED PROBLEMS
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Fig. 2. FEM computation of theend-winding |eakage reactance of a permanent
magnet servo motor to be coupled with theandytical motor mode.

The overall term coupled problems considers the cupled
fields and in addition includes the cupling of methods as
well. The link between different methods to solve a field
problem, for example using the mbination of finite
element and boundary element method is understood as a
coupled problem.

Or the dasscal analytical machine theory delivers models
that can be cmbined with a numerical technique in order to
foom an overall mode (Fig. 2). With resped to
computational efforts, for example for dynamic simulations
of motor models or observer models for the machine ntral,
the wupling of those methods is advantageous to oltain an
acaurate but smple overall model of the machine.

Observing problems in the transient modeling of relative
motion of machine parts such as in a rotating motor. A
posshble solution of this modeling problem can be a coupling
of geometries by dement types with spedal properties.
Overlapping shape functions can be used to join different
meshes of a FEM model and this can be seen as a coupled
problem aswell.

A further example of this type of probems, the mupling
of measurements with a numerical model can be given. The
basic idea in this type of problem is to measure difficult to
obtain parameters and to use them asinput parameter for the
numerical field computation. Such parameters are mainly
non-linearly depending on the field guantities and the
interdependency from them is unknown. For example
material data obtained by measurements are approximated
by interpolating polynoms and can be used in this numerical
format during the field computations. Lodk-up tables with
measured data samples are possble aswell.

After this first more or less sibjedive judgment of the
various coupling mechanisms, in the following discusson
the wupled problems are distinguished with resped to
physical and numerical aspeds. The single involved field
types are described here as sub-problems with spedfic
properties. It will be @ncluded with a matrix systematic.
The matrix entries distinguish between the problem, the
model description, the wupling mecdhanism, a proposed
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Fig. 3. Coupled FEM dedric/magnetic/thermal field problem of athree
phase power cablewith diff erent meshesfor each sub-problem.



iteration scheme and a proposed method to solve the overall
field problem.

A. Subproblem Extent: Domain/Interface

The different interacting physical phenomena decribed by
the cmupled probdlem are defined on partially or totally
overlapping domains. For example thermal-eledromagnetic
problems are belonging to this group (Fig. 3) [4]. For the
eledro magnetic problem definition the surrounding air has
to be modeled. The same domain is considered in the
thermal problem by spedal boundary conditions such as heat
transfer due to convedion or radiation boundaries. By using
the FEM, different meshes for each sub-problem can be used
(Fig. 3). The interaction takes place through interface
equations. The involved field problems can be numerically
strong, i.g. on matrix level, or weak coupled, computed in a
cascade algorithm.

B. Subproblem Discretization Methods: Homogenous/
Hybrid

It is ometimes advantageous to apply different
discretization schemes for the sub-problems.  The methods
used can be different, such as FEM opposed to BEM or FEM
methods with different types of elementsto result in ahybrid
method [2]. The discretizations constructed for the sub-
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Fig. 4. a) Therma FEM model coupled with thermal equivalent circuit to
condder theaxial diredion of the feat transfer (circuit elementsin radial
diredionare nat drawn) andb) the computed iso-thermal lines.

problems with a common domain may differ. The addition of
algebraic equations originating from equivalent circuit
models is possble as wel [5]. For example, a two
dimensonal FEM modd to compute the temperature
distribution inside an eledrical machine (Fig. 4) can be
extended by an equivalent thermal circuit model to consider
the heat transfer in the axial machine diredion. In this way,
a quas three dimensional approach is obtained by the
coupled methods. The mwmbination of different FEM models
with an additional analytical model is possble. External
eledric drcuits can be mupled to consider the voltage or
current driven energy sourceaswell.

methods:

C. Numerical Iterative solution

full/ cascade algorithms

(block)

Due to the nature of the physical sub-problems and the
chosen discretization method, differing numerical properties
can be linked to the ejuations descending from the sub-
problems. A variety of numerical methods can to be dosen
to solve the single sub-problem. Most of them can be
regarded as block iterative schemes. It is possble to put a
the subsystems in a single matrix, with off-diagonal blocks
mathematically describing the (linearized) coupling. This
can be mnsdered as a numerically strong and thus fully
coupled approach.

On the other hand, several blocks can be sol ved separately
with a well-suited equation solver. Not considering possble
parall dizations, the solution of the sub-problems is usually
obtained in successve steps in a “cascade’ algorithm. The
newly obtained part of the solution can be used immediately
in the next step (GaussSeidd-like) or not (Jacobi-like).
Other suitable solution techniques are domain decompositi on
algorithms.

V. CLASSFICATION SCHEME

The made remarks on the dassfication of coupled
problems to huild up a matrix systematic, underline the
difficulty to put al the medchanisms with resped to their
different nature into ane system.

The here developed matrix shows couplings between
entries in the horizontal as well as in the vertical diredion
(Tablel). Bi-diredional links to aher entries are possble as
well.

The olumns of the matrix are representing the mentioned
differences of the mnsidered problems with its coupling
medhanism. The rows of the systematic are representing the
proposed types of problem to put into the appropriate
column.

With resped of the geometry, in the first column the
studied domains have different properties, such as grong
differing material properties. The numerical sub-problems
are described by partia differential equations (PDE) and the
coupling of the systems of equations is defined by its



boundary conditions or interface ejuations. Depending on
the ndition of the single sub-problems, a full coupling and
weak coupling by cascade algorithms is proposed. For
example a hybrid FEM/BEM can be used to solve the overall
field problem or in the @se of strong dfferences in the
condition of the sub-problems domain decomposition (DD)
algorithms, a weak coupling can be enployed. Here, an
ambivalence of the overall problem can be noticed, using a
hybrid method can be mnsidered as a coupled method and
the DD as aweak coupling of physical systems.

The physicad nature of the fidd sub-problems is
considered in the second column. Examples for this, are
coupled magnetic/thermal or other field combinations. The
fields can be described either by PDE's or by a combination
of PDE and algebraic equations, if equivalent circuit models
are used for one of the sub-problems. The wupling ismainly
performed by the exchange of the material parameters and
source terms (problem Fig. 3) or diredly be the drcuit
equations (problem Fig. 4). For example if external eedric
circuits are mnsidered. For the solution, numerically strong
and weak coupled iteration schemes can be appli ed.

Hybrid methods are put to the third column. The mupled
phenomena have different numerical properties. All possble
coupled methods sich as FEM, BEM, magnetic- thermal-
equivalent circuits as well as the dasscal analytical field
theory coupled to modern numerical techniques are put to
this matrix entry. The model description of the overall
problem can be done by coupling PDE's, circuit equations,
analytical methods (problem Fg. 2) or other methods.

The difference of behavior in time of the mupled effeds
considers the last column of the matrix. Here, al the
transient problems can be found. Simulations with resped to
the differential equation of motion, an ordinary differential
equation (ODE) are put to this matrix entry. Various, and
even coupled methods are suited to solve such in time
coupled problems.

CONCLUSIONS

Starting with the various field types and phenomena that
are inherently coupled in the physical redlity, the terms of
coupled problem, methods and fields are defined. The notion
of a strong and/or weak coupled mechanism is introduced
and motivated by numerical aspeds. Examples of coupled
problems, methods and phenomena ae given to verify and
support the statements made. The proposed systematic can
probably simplify the further discussons over the numerical
solution of "coupled problems" by using the same notations.

It must be noted, that the proposed systematic is not
complete but can be extended and can serve as the starting
point classfying coupled problemsin gereral.
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TABLE |. CLASSFICATION SCHEME FOR COUPLED FIELD PROBLEMS.

geometrically physicaly methods time
problem domain with diff erent different physical properties different numerical different time constants of
properties *  magnetical/thermal properties the coupled ptenonena
«  magnetical/thermal/dynamical * FEM
¢ magnetical/medanical « BEM
¢ dedrical/thermal e equivalent circuits
. ¢ analytical moddls
model description PDE/PDE PDE/dg PDE/PDE PDE/PDE, PDE/alg, PDE/alg PDE/PDE
. andor ODE  andor ODE
other couplings
couging * boundary condtions  «  circuit e parameter *  boundary condtions 7. 01, >>T1,
« interffaceequations equations ¢ sourceterms « interffaceequations
iteration scheme full cascade full full cascade full cascade full cascade
propcsed method FEM/BEM DD FEM/circuit FEM/FEM FEM/BEM DD, other FEM FEM/FEM
equations methods trangent,
FEM/BEM
trangent

PDE partial differential equation, alg algebraic equation, ODE ordinairy diff erential equation, DD domain demmposition method



