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Abstract —The term “ coupled problem” is used in many 
numerical approaches and appli cations. Var ious coupling 
mechanisms in a different context, such as field problems with 
electr ical circuits, methods in a geometr icall y or physicall y 
sense, couplings in time and/or coupled methods to solve a field 
problem, are meant with this term.  For a proper classif ication 
of these problems and related solution methods a systematic 
definition is proposed.  I t can be used in the evaluation and 
compar ison of solution methods for var ious problems. 

I t must be noted, that the proposed systematic is not 
complete but can be extended and can serve as the star ting 
point classifying coupled problems in general. 
 
 
 Index terms — coupled field problems, numerical 
techniques, finite element method 
 

I. INTRODUCTION 
 
A coupled system or formulation is defined on multiple 

domains, possibly coinciding, involving dependent variables 
that cannot be eliminated on the equation level [1]. 

In the literature, this notion is often linked to a 
distinguishing context of various physical phenomena or 
methods, without further specification. This paper proposes a 
classification scheme, in which the numerical models, 
meeting the proposed definitions, can be put. This may lead 
to the definition of a series of test problems for specified 
coupled problems and solution algorithms. A classification 
scheme can simpli fy the comparison of the various examples 
and approaches out of the literature, that solve such coupled 
problems.  

Next to "coupled problems" the terms of "weak-" 
respectively "strong-coupled" will be discussed to propose a 
more homogenous terminology. 

 
 

II . COUPLED FIELDS 
 

To start with a definition of standards or a classification of 
technical physical problems, the properties and the 
interdependencies of such phenomena must be considered.  

 

magnetic field stationairy electrical
flow field

thermal field

ohmic losseseddy currents,
hysteresis

mech. structural
field

force, torque

differential equation
of motion

 
 

Fig. 1. Simpli fied structure of coupled field problems. 
 
A general and simpli fied structure of considered field 

problems can  be  taken  from  Fig. 1.  The link  between  the 
single fields is determined by material properties depending 
on the corresponding field quantities. If the field blocks are 
representing numerical methods to solve the single problem 
in two dimensions, further couplings to external equations 
such as electrical circuits, magnetical or thermal equivalent 
circuit models are possible to complete the scheme.  

The link between the drawn blocks is, in the context of 
coupled problems and its numerical solution, a computer 
model or method. The following question is, in which way 
the physical phenomena have to be considered in an overall 
solution. From the idea of how to li nk the effects numerically 
a classification of the methods can be performed. 

 
 

III . STRONG AND WEAK COUPLING 
 

In general, it is possible to distinguish between the 
coupled problem in two ways, its physical or in its numerical 
nature. Very often a coupled is called either 

• strong or 
• weak. 
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In the physical sense, the strong coupling describes effects 
that are physicall y strongly coupled and the phenomena can 
not numericall y be treated separately. Respectively, the weak 
coupling describes a problem where the effects can be 
separated. The problem with this definition is obvious: If 
coupled problems are studied, it is not very good known how 
strong, respectively weak they are physicall y coupled; this is 
the requested answer expected from the analysis of the 
overall problem. For example if the material property 
describing parameter are non-linearly depending on the field 
quantities, the coupling, (strong/weak) can change with 
varying field quantities and the field quantities are the result 
of the analysis. Therefore, the definition of strong/weak 
coupling should be chosen with respect to the numerical 
aspects instead to their physical nature. Choosing for the 
numerical aspects, it is possible to have a combined 
strong/weak coupling of field problems. This means that the 
strategy of coupling can vary during the solution process. 

Numericall y strong coupling is the full coupling of the 
problem describing equations on matrix level. The equations 
of all i nvolved and modeled effects are solved 
simultaneously. This implies, that the coupling terms are 
inserted in the coeff icient matrix as well .  

The numericall y weak coupled problem is understood as a 
cascade algorithm, where the considered field problems are 
solved in successive steps and the coupling is performed by 
up-dating and transferring the field depending parameters to 
the other field definition before solving again. 

Since the problems cannot be distinguished by means of 
elimination, an bi-directional influence exists. The 
sensiti vity of a sub-problem to changes of the variables of the 
studied problem can differ strongly. It is diff icult to quantify 
a threshold to separate both groups and therefore, the 
separation may be considered as somewhat subjective. 

In this respect, the time constants of the sub-problems play 
an important role.  Usually the thermal and mechanical time 
constants are several orders larger when compared to the 
electromagnetic ones.  So on a short term, the problem with 
a larger time constant can be considered as weak coupled.  
But this is not true if the stationary solution is of interest. 

IV. COUPLED PROBLEMS 

 
The overall term coupled problems considers the coupled 

fields and in addition includes the coupling of methods as 
well . The link between different methods to solve a field 
problem, for example using the combination of finite 
element and boundary element method is understood as a 
coupled problem.  

Or the classical analytical machine theory deli vers models 
that can be combined with a numerical technique in order to 
form an overall model (Fig. 2). With respect to 
computational efforts, for example for dynamic simulations 
of motor models or observer models for the machine control, 
the coupling of those methods is advantageous to obtain an 
accurate but simple overall model of the machine.  

Observing problems in the transient modeling of relative 
motion of machine parts such as in a rotating motor. A 
possible solution of this modeling problem can be a coupling 
of geometries by element types with special properties. 
Overlapping shape functions can be used to join different 
meshes of a FEM model and this can be seen as a coupled 
problem as well .  

A further example of this type of problems, the coupling 
of measurements with a numerical model can be given. The 
basic idea in this type of problem is to measure diff icult to 
obtain parameters and to use them as input parameter for the 
numerical field computation. Such parameters are mainly 
non-linearly depending on the field quantities and the 
interdependency from them is unknown. For example 
material data obtained by measurements are approximated 
by interpolating polynoms and can be used in this numerical 
format during the field computations. Look-up tables with 
measured data samples are possible as well . 

After this first more or less subjective judgment of the 
various coupling mechanisms, in the following discussion 
the coupled problems are distinguished with respect to 
physical and numerical aspects. The single involved field 
types are described here as sub-problems with specific 
properties. It will be concluded with a matrix systematic. 
The matrix entries distinguish between the problem, the 
model description, the coupling mechanism, a proposed 
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Fig. 2. FEM computation of the end-winding leakage reactance of a permanent 

magnet servo motor to be coupled with the analytical motor model. 
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Fig. 3. Coupled FEM electric/magnetic/thermal field problem of a three 
phase power cable with different meshes for each sub-problem.  
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iteration scheme and a proposed method to solve the overall 
field problem. 

 
A. Sub-problem Extent: Domain/Interface 
 

The different interacting physical phenomena described by 
the coupled problem are defined on partiall y or totall y 
overlapping domains. For example thermal-electromagnetic 
problems are belonging to this group (Fig. 3) [4]. For the 
electro magnetic problem definition the surrounding air has 
to be modeled. The same domain is considered in the 
thermal problem by special boundary conditions such as heat 
transfer due to convection or radiation boundaries. By using 
the FEM, different meshes for each sub-problem can be used 
(Fig. 3). The interaction takes place through interface 
equations. The involved field problems can be numericall y 
strong, i.g. on matrix level, or weak coupled, computed in a 
cascade algorithm. 

 
B. Sub-problem Discretization Methods: Homogenous/ 
Hybrid 
 

It is sometimes advantageous to apply different 
discretization schemes for the sub-problems.  The methods 
used can be different, such as FEM opposed to BEM or FEM 
methods with different types of elements to result in a hybrid 
method [2]. The discretizations constructed for the sub-

problems with a common domain may differ. The addition of 
algebraic equations originating from equivalent circuit 
models is possible as well [5]. For example, a two 
dimensional FEM model to compute the temperature 
distribution inside an electrical machine (Fig. 4) can be 
extended by an equivalent thermal circuit model to consider 
the heat transfer in the axial machine direction. In this way, 
a quasi three dimensional approach is obtained by the 
coupled methods. The combination of different FEM models 
with an additional analytical model is possible. External 
electric circuits can be coupled to consider the voltage or 
current driven energy source as well . 
 
C. Numerical Iterative (block) solution methods: 
full/ cascade algorithms 
 

Due to the nature of the physical sub-problems and the 
chosen discretization method, differing numerical properties 
can be linked to the equations descending from the sub-
problems. A variety of numerical methods can to be chosen 
to solve the single sub-problem. Most of them can be 
regarded as block iterative schemes. It is possible to put al 
the subsystems in a single matrix, with off-diagonal blocks 
mathematicall y describing the (linearized) coupling. This 
can be considered as a numericall y strong and thus full y 
coupled approach. 

On the other hand, several blocks can be solved separately 
with a well -suited equation solver. Not considering possible 
paralleli zations, the solution of the sub-problems is usually 
obtained in successive steps in a “cascade” algorithm. The 
newly obtained part of the solution can be used immediately 
in the next step (Gauss-Seidel-li ke) or not (Jacobi-li ke). 
Other suitable solution techniques are domain decomposition  
algorithms. 

 
 

V. CLASSIFICATION SCHEME 
 
The made remarks on the classification of coupled 

problems to build up a matrix systematic, underline the 
diff iculty to put all the mechanisms with respect to their 
different nature into one system.  

The here developed matrix shows couplings between 
entries in the horizontal as well as in the vertical direction 
(Table I). Bi-directional li nks to other entries are possible as 
well .  

The columns of the matrix are representing the mentioned 
differences of the considered problems with its coupling 
mechanism. The rows of the systematic are representing the 
proposed types of problem to put into the appropriate 
column.  

 With respect of the geometry, in the first column the 
studied domains have different properties, such as strong 
differing material properties. The numerical sub-problems 
are described by partial differential equations (PDE) and the 
coupling of the systems of equations is defined by its 
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Fig. 4. a) Thermal FEM model coupled with thermal equivalent circuit to 
consider the axial direction of the heat transfer (circuit elements in radial 

direction are not drawn) and b) the computed iso-thermal lines. 



boundary conditions or interface equations. Depending on 
the condition of the single sub-problems, a full coupling and 
weak coupling by cascade algorithms is proposed. For 
example a hybrid FEM/BEM can be used to solve the overall 
field problem or in the case of strong differences in the 
condition of the sub-problems domain decomposition (DD) 
algorithms, a weak coupling can be employed. Here, an 
ambivalence of the overall problem can be noticed, using a 
hybrid method can be considered as a coupled method and 
the DD as a weak coupling of physical systems. 

The physical nature of the field sub-problems is 
considered in the second column. Examples for this, are 
coupled magnetic/thermal or other field combinations. The 
fields can be described either by PDE's or by a combination 
of PDE and algebraic equations, if equivalent circuit models 
are used for one of the sub-problems. The coupling is mainly 
performed by the exchange of the material parameters and 
source terms (problem Fig. 3) or directly be the circuit 
equations (problem Fig. 4). For example if external electric 
circuits are considered. For the solution, numericall y strong 
and weak coupled iteration schemes can be applied.  

Hybrid methods are put to the third column. The coupled 
phenomena have different numerical properties. All possible 
coupled methods such as FEM, BEM, magnetic- thermal-
equivalent circuits as well as the classical analytical field 
theory coupled to modern numerical techniques are put to 
this matrix entry. The model description of the overall 
problem can be done by coupling PDE's, circuit equations,  
analytical methods (problem Fig. 2) or other methods.  

The difference of behavior in time of the coupled effects 
considers the last column of the matrix. Here, all the 
transient problems can be found. Simulations with respect to 
the differential equation of motion, an ordinary differential 
equation (ODE) are put to this matrix entry. Various, and 
even coupled methods are suited to solve such in time 
coupled problems.  

 
 

CONCLUSIONS 
 
Starting with the various field types and phenomena that 

are inherently coupled in the physical realit y, the terms of 
coupled problem, methods and fields are defined. The notion 
of a strong and/or weak coupled mechanism is introduced 
and motivated by numerical aspects. Examples of coupled 
problems, methods and phenomena are given to verify and 
support the statements made. The proposed systematic can 
probably simpli fy the further discussions over the numerical 
solution of "coupled problems" by using the same notations. 

It must be noted, that the proposed systematic is not 
complete but can be extended and can serve as the starting 
point classifying coupled problems in general. 
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TABLE I. CLASSIFICATION SCHEME FOR COUPLED FIELD PROBLEMS. 

 
 geometrically physically methods time 

problem domain with different 
properties 

different physical properties 
• magnetical/thermal 
• magnetical/thermal/dynamical 
• magnetical/mechanical 
• electrical/thermal 
• ... 

different numerical 
properties 

• FEM 
• BEM 
• equivalent circuits 
• analytical models 
• ... 

different time constants of 
the coupled phenomena 

model description PDE/PDE PDE/alg PDE/PDE PDE/PDE, PDE/alg,  

other couplings 

PDE/alg 
and/or ODE 

PDE/PDE 
and/or ODE 

coupling • boundary conditions 
• interface equations 

• circuit 
equations 

• parameter 
• source terms 

• boundary conditions 
• interface equations 

τ1 ≅ τ2 τ1>> τ2 

iteration scheme full  cascade full  full  cascade full  cascade full  cascade 

proposed method FEM/BEM DD FEM/circuit 
equations 

FEM/FEM FEM/BEM DD, other 
methods 

FEM 
transient, 

FEM/BEM 
transient 

FEM/FEM 

PDE partial differential equation, alg algebraic equation, ODE ordinairy differential equation, DD domain decomposition method 


