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Abstract 
An efficient method for the treatment of floating potentials, associated with the finite element method and 
applied to various electromagnetic problems, i.e. electrostatics, electrokinetics, magnetostatics and mag-
neto-thermal coupling, is presented. A key feature of the method is that it leads to naturally define global 
flux quantities associated with floating potentials. Advantages are numerous, e.g. local and global quanti-
ties are coherently coupled within the finite element model and the matrix of the system remains symmet-
rical. 

INTRODUCTION 

Many electromagnetic problem formulations make use of scalar potentials, of which the gradient is a 
physical vector field (e.g. e = – grad v where e is the electric field and v is the electric scalar potential, in 
electrostatics). These potentials define fields of local quantities in the studied domain and can be ap-
proximated with the finite element method. 
Certain boundary conditions on parts of the boundary of the studied domain can imply the definition of 
floating values for scalar potentials [1, 2, 6, 7]. A floating value is an unknown constant on a region and 
comes from a homogeneous boundary condition for the tangential component of the associated physical 
vector field (e.g. n × e = – n × grad v = 0 on surface Γ implies that v is a constant on Γ). Also, in some 
cases, it can be advantageous to extract some regions from the studied domain when they exhibit particu-
lar properties, usually large values of physical properties, to prevent numerical difficulties during compu-
tation. Therefore, only the boundaries of these regions have to be taken into account in the finite element 
model. This results in defining associated boundary conditions leading again to floating potentials. 
A natural and general method can be applied to efficiently take floating potentials into account in the 
frame of the finite element method. It only makes use of the information contained in the weak finite ele-
ment formulation of the main problem, without any intermediate computational procedure, to express in 
the correct weak sense the global flux quantities which are always necessary for a complete definition of 
floating potentials [6, 7]. The method is described and applied to electrostatics, electrokinetics, magne-
tostatics and magneto-thermal coupling, to naturally define electric charges and floating potentials, cur-
rents and voltages, magnetic fluxes and magnetomotive forces, and heat fluxes and floating temperatures, 
respectively. Illustrative examples are given to point out the main characteristics of the method. 

FLOATING POTENTIALS 

Discrete scalar potentials and their formulations 
A Green formula is generally involved in the establishment of weak formulations of partial differential 
equations using scalar potentials or scalar fields. It is the grad–div formula applied to a domain Ω of 
boundary Γ, i.e. 
 ( u , grad v )Ω + ( div u , v )Ω = < n · u , v >Γ , (1) 
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where u ∈ H1(Ω) and v ∈ H1(Ω); ( · , · )Ω and < · , · >Γ respectively denote a volume integral in Ω and a 
surface integral on Γ of products of scalar or vector fields [7]; normal n is exterior to Ω. A suitable treat-
ment of the surface integral term in (1) can be made to naturally define global quantities of flux types in a 
weak sense, as it will appear in the following. Those weak global quantities will be associated with the 
strongly defined ones, being floating potentials. 
A discrete characterization is developed for a scalar field v ∈ H1(Ω) in grad–div formula (1). Such a field 
is generally discretized in a nodal finite element space, defined on a mesh of Ω and denoted S0(Ω) 
[3, 4] — associated finite elements can be of various geometries and degrees, in 2D and 3D —, i.e. 

 v v s v Sn nn N= ∈∈∑ , ( )0 Ω  , (2) 

where N is the set of nodes of Ω, sn is the nodal basis function associated with node n and vn is the value 
of v at node n. Functions sn, ∀ n ∈ N, form a basis for the nodal finite element space without constraint, 
e.g. boundary conditions or fixed global quantities. In case constraints exist, functions sn in (2) are no 
longer linearly independent, i.e. relations exist between some of their coefficients. The direct expression 
of these constraints reveals the basis functions to consider, i.e. which can serve as test functions in the fi-
nite element method. 
Such a potential v can be involved in a scalar potential formulation of the generalized problem 

 r = – grad v ,   div s = η ,   s = α r . (3-4-5) 
Note that (3) comes from an equation of the form curl r = 0, and in case this original equation contains a 
source term ks, i.e. curl r = ks, (3) becomes r = rs – grad v where rs is a source field satisfying curl rs = ks. 
Generalized fields r, s, v, η, ks and characteristic α will be particularized to physical quantities involved 
in some physical problems in the next section. 
The scalar potential weak formulation is obtained from the weak form of (4), together with (3) and (5), i.e. 

 ( , ' ) , ' ( , ' ) , ' ( )− − < ⋅ > + = ∀ ∈α ηgrad v grad v v grad v v Fs rsΩ Γ Ω Ωn s 0 0 , (6) 

where n ⋅ ss is a constraint on the generalized flux density s associated with nonfixed potential boundaries 
Γs of domain Ω, e.g. on floating potential boundaries Γf, f ∈ Cf. F0(Ω) is a function space of scalar fields 
defined in Ω, with essential boundary conditions when subscripted.  

Floating scalar potential constraints 
In order to explicitly define constraints of floating potential type, the nodes of Ω are classified in comple-
mentary subsets: Nv, which is the set of nodes inside Ω, and Nf, ∀ f ∈ Cf, which are the sets of nodes of 
parts Γf (Fig. 1). Floating potentials being constant on each Γf, (2) can then be decomposed as 

 v v s v s v Sn nn N
f f

f Cv f
= + ∈∈ ∈∑ ∑ , ( )0 Ω  ,   with  s s f Cf nn N ff= ∀ ∈∈∑ ,  , (7-8) 

  
where sn, ∀ n ∈ Cn, and sf, 
∀ f ∈ Cf, are basis functions for 
the constrained potential.  
Each function sf is associated with 
the group of nodes — a global 
geometrical entity, while nodes 
n ∈ Nv are elementary entities — 
of boundary Γf (Fig. 1). The sup-
port of sf (i.e. its domain of non-
zero values) is limited to a transi-
tion layer containing all the geo-
metrical elements having nodes 
on Γf. 

 
Fig. 1. Nodes and groups of nodes associated with the characterization of  

a scalar potential with floating values (7). 

Discrete global fluxes 
The discretization of the generalized weak formulation (6), by using test functions appearing in (7), gives 
regular symmetrical systems of equations. Test functions sn, ∀ n ∈ Nv, are classically treated, while test 
functions sf, ∀ f ∈ Cf, need attention.  



 
 

 

The surface integral term in (6) has, for test function sf, equal to one on Γf [3], [4], a contribution equal to 
< n ⋅ ss , 1 >Γf and thus to the flux of ss leaving Ω through surface f ∈ Cf, noted ψf. This contribution is re-
lated to a physical flux. Then, to the surface integral on Γf in (6) can be substituted the value of the global 
flux ψf, i.e. 

 < ⋅ > = < ⋅ > =n s n ss s fv
f f

, ' ,Γ Γ Ψ1  ,   for v s S f Cf f' ( ),= ∈ ∈0 Ω . (9) 

Consequently, the computation of the global flux can be performed in average by the volume integral in 
(6) in a transition layer (support of sf ; Fig. 1), i.e. 

 Ψ Ω Ωf f f fgrad v grad s grad s f C= − + ∈( , ) ( , ) ,α η . (10) 
This approach is in perfect accordance with the discretized weak formulation of the problem, i.e. with (6), 
and thus with an only weakly satisfied conservation of flux. The computation of the global flux based on 
the explicit surface integration of n ⋅ s (i.e., – α n ⋅ grad v) would be affected by the choice of the integration 
surface. There would be generally no reason for the so computed flux to be equal to the flux given by the 
volume integral in the transition layer, whatever the surface is. 
Compared to another method considering floating regions as whole volume regions with sufficiently high 
values of the generalized physical characteristic α, the proposed approach has the advantage of directly 
giving flux quantities. This can be useful for the computation of lumped parameter models or when both 
potential and flux have to be considered, e.g. in case of physically coupled problems. Moreover, the num-
ber of unknowns is lower with the proposed method, while keeping a symmetrical matrix of the system of 
equations as the discrete space defined by (7) concerns both test and shape functions. 
For a fixed potential region, (10) can also be used for an efficient computation of the global flux ψf at the 
post-processing stage (this has similarities with the method in [5]). For that, it is sufficient to define also 
basis functions of type sf (8) for such regions. 

APPLICATIONS TO ELECTROMAGNETIC PROBLEMS 

Applications of floating potentials to electromagnetic problems are numerous. The proposed method is 
applied to electrostatics, electrokinetics, magnetostatics and magneto-thermal coupling, to naturally define 
floating potentials — of electric, magnetic or thermal types —, and their associated global flux quantities, 
being respectively electric charges, electric currents, magnetic fluxes and heat fluxes. All these problems 
involve similar properties and are derived from the generalized problem (3-4-5) as shown in Table 1. Illus-
trative examples are given below to point out the main characteristics of the method. 

TABLE 1.  APPLICATION OF THE GENERALIZED PROBLEM OF FLOATING POTENTIALS TO PARTICULAR PHYSICAL PROBLEMS 

Generalized  
problem Electrostatics Electrokinetics Magnetostatics Magneto-thermal 

(thermal part) 
Equations     

curl r = ks curl e = 0 curl e = 0 curl h = js curl p = 0 
div s = η div d = ρ div j = 0 div b = 0 div q = Q 
s = α r d = ε e j = σ e b = µ h q = k p 

Potential def.     
r = rs – grad v e = – grad v e = – grad v h = hs – grad φ 

with curl hs = js 
p = – grad T 

Fields     
field r e = electric field e = electric field h = magnetic field p = gradient of temperature 
field s d = electric flux density j = current density b = magnetic flux density q = heat flux density 
field η ρ = electric charge density — — Q = thermal source density
field ks — — js = source current density — 

scalar potential v v = electric scalar potential v = electric scalar potential φ = magnetic scalar potent. T = temperature 
characteristic α ε = electric permittivity σ = electric conductivity µ = magnetic permeability k = thermal conductivity 

Global flux 
(weak sense) 

electric flux,  
i.e. electric charge 

electric current magnetic flux heat flux 

Global floating 
potential 

floating  
electric potential 

floating  
electric potential 

floating  
magnetic potential 

floating  
temperature 



 
 

 

Electrostatics 
The boundary of a perfectly electric conducting region is, under static or quasi-static conditions, i.e. in 
electrostatics, an equipotential surface for the electric scalar potential. In case this equipotential value is 
unknown, it is of floating type and can be well defined by the knowledge of the electric charge contained 
in the region [1, 2, 6, 7]. The global flux ψf given by (9) is here the opposite of the total electric charge Qf 
of Ωf (∂Ωf = Γf). In particular, the method enables an efficient computation of capacitances thanks to a co-
herent definition of both electric potential and charge [6].  
An example of application concerns insulators 
leading high-voltage conductors through 
grounded walls, floors and metal tanks, which 
are called "bushings" [8] (Fig. 2). They consist 
of an insulator, mainly porcelain filled with oil, 
around the high-voltage conductor. This con-
figuration suffers from local high electric field 
strengths on the triple junction area. This diffi-
culty is overcome by the conductor bushing 
principle. A number of concentric conducting 
cylinders form a series connection of capacitors 
[9] and redistribute the electric field towards the 
top of the bushing. Two bushings, one without 
conducting cylinders (left in Fig. 3a), one with 
conducting cylinders (right in Fig. 3a) [10] are 
modelled applying axisymmetry. The vertical 
conductor is applied with a voltage of 75 kV. 
The bushing is fixed on a transformer tank on 
ground potential.  

        

Fig. 2. Condenser bushing [10]. 

Floating potential boundary conditions are applied to model the equipotential surfaces of the conducting 
cylinders (Fig. 3a). The equipotential plots and the field strength plots of the electric fields are shown in 
Figs. 3b and 3c. The conducting cylinders push the electric field towards the top of the bushing. As a re-
sult, the electric field strength diminishes at the grounded tank whereas the field strength raises at the top 
of the bushing. 

a) b) c)  

Fig. 3. a) Geometry; b) equipotential lines and c) electric field strengths of non-condenser and condenser bushings. 

Electrokinetics 
An electrokinetic formulation using a scalar potential can benefit from floating potentials to define global 
quantities such as electric voltages and currents. Either voltages or currents can be prescribed, leading to 
the computation of the nonprescribed quantities and then to the determination of electric resistances. 
Fig. 4 shows a metallic plate of which the right surface is fixed at zero potential while the left one is asso-
ciated either with a prescribed current and a floating potential, or a prescribed potential and an unknown 
current. Fig. 5 shows a ground in which a current enters and leaves through two surfaces and of which the 
resistance can be computed as well. 

insulator 

triple junction area 

oil 

conducting cylinder 

grounded wall 

conductor 



 
 

 

Fig. 4. Potential lines and electric current density  
in a metallic plate with circular cavities  

(the opposite sides are equipotential surfaces). 

Fig. 5. Potential lines in the ground due to a current 
entering and leaving through two small surfaces. 

Magnetostatics 
A magnetic scalar potential can be of floating type on the boundary of a perfectly magnetically conducting 
region (µ → ∞) as well as on surfaces crossed by magnetic flux paths [7]. Here, the total flux ψf given by 
(9) is the magnetic flux. For the first case, this flux is directly taken to be equal to zero through the closed 
surface Γf of the perfectly magnetic region (Fig. 6). The theoretical limit µ → ∞ is practically obtained 
with a good accuracy when the permeability of the material is higher than 300 times the one of the exterior 
region. Then, the flux can be considered as a degree of freedom and its direct natural coupling with mag-
netomotive force and local magnetic field can be obtained. This enables the modeling of magnetostatic 
circuits with definition of associate lumped parameters, i.e. reluctances (Fig. 7) [7]. 

  
Fig. 6. Magnetic potential lines around a perfectly magnetic 

screen in an initially uniform oblique source field. 
Fig. 7. Magnetic circuit element with injected magnetic flux

through Γφ1 (potential lines and field lines). 
 
Another example is a 2D magnetic vector 
potential of floating type on a boundary 
where no flux is passing. A region can be 
omitted out of the model if it is embedded 
in a region with a relatively high reluctance 
and when the boundary carries a floating 
potential. If the cooling channels in the sta-
tor and rotor of an asynchronous machine 
have small influence on the magnetic be-
havior of the device, the reluctance of the 
cooling air is far lower than the reluctance 
of the surrounding iron. The size of the dis-
cretization is reduced by omitting these re-
gions. Floating potential boundary con-
straints make these boundaries impenetra-
ble for a magnetic flux (Fig. 8). 

 
Fig. 8. Flux line plot and mesh detail of an asynchronous machine. 



 
 

 

Magneto-thermal coupling 
A thermal formulation can also use a floating temperature on boundaries of highly thermal conductive ma-
terials, naturally associated with heat flux as thermal source (computed e.g. from an magnetodynamic 
problem). Such a heat flux is directly the flux ψf given by (9).  
Ohmic, dielectric and iron losses are responsible for the heat generation inside an electromagnetic device. 
The conductivity, permeability and remanence of materials depend on the temperature. Therefore, the 
magnetic and thermal fields are physically coupled. The numerical coupling of both phenomena gives of-
ten raise to excessive solution times [11]. With respect to coupled field problems it is important to reduce 
the thermal and magnetic mesh sizes. This can be done by omitting thermally highly conducting material 
out of the thermal problem and applying floating temperatures on those boundaries. The magnetic problem 
is reduced as described above. The floating potential approach has been successfully applied to a coupled 
thermal-electromagnetic calculation of a three-phase power cable [12]. 

CONCLUSIONS 

A method has been proposed which finds its place into a general frame of definitions of floating poten-
tials, these being global quantities related to fluxes. It has been applied to formulations of various physical 
problems, such as electrostatics, electrokinetics, magnetostatics and magneto-thermal coupling, to natu-
rally define the implied global quantities in both weak and strong senses.  
The generality of the method, which is set at the formulation level, enables its application to all kinds of 
geometrical models (2D or 3D), with linear or nonlinear material characteristics. The method is independ-
ent of the properties of the finite elements used (geometry and degree of basis functions). All the advan-
tages of the method appear when local and global quantities have to be coupled, either within a finite ele-
ment problem or through external lumped circuits, expressed by circuit equations, which directly opens 
the method to the coupling of physical problems. 
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