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 Abstract - Although most finite element programs have very 
effective iterative solvers such as ICCG and SSORCG, the 
solution time becomes long for very large systems. Convergence 
and thus the total solution time can be improved by using better 
preconditioners such as multigrid methods. Algebraic multigrid 
methods have the supplementary advantage that no geometric 
information is needed. The implemented algebraic multigrid 
method reduces the overall computation time by a factor of 6 
compared to a SSORCG solver. 
 

INTRODUCTION 
 
 In finite element programs, direct methods are nowadays 
often replaced by iterative methods to solve the system of 
discretised linear equations. Stationary methods such as 
Jacobi, Gauss-Seidel and successive overrelaxation are 
straightforward to implement but usually not very effective. 
The conjugate gradient method (CG), a non-stationary 
method, is harder to apply, but very effective when used in 
combination with a good preconditioner. Symmetric 
successive overrelaxation (SSOR) and the incomplete 
Cholesky decomposition (IC) are typically used as 
preconditioner for the CG method. Multigrid methods can 
also be used as preconditioners or as solvers to obtain even 
more efficient iterative methods. 
 

ALGEBRAIC MULTIGRID METHOD 
 
 Basic iterative schemes for solving the matrix equation 
 
 A x f− = 0  (1) 
 
often reduce the high frequency components of the error 
vector e very effectively (fig. 1.i). 
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Fig. 1: Evolution of the error e 

 
Convergence stalls, however, as soon as the error becomes 
smooth. Smooth errors look more oscillatory when projected 
onto coarser grids (fig. 1.ii). This is exploited in multigrid 
methods, which involve a hierarchy of continuously coarser 
meshes [3]. The error on the fine grid is smoothed by 
applying a few steps of a basic iterative scheme. This smooth 
error is projected onto a coarser mesh, where a correction 
term is computed. The correction term is interpolated back to 
the fine grid and added to the existing approximation. This 
method is applied recursively to compute the coarser grid 
corrections until the cost of computing this correction by a 
direct solver becomes negligible. 
 
Algebraic Multigrid Method as Solver 
 
 Standard multigrid methods require a hierarchy of meshes 
constructed by using the geometry of the problem. This 
makes the implementation of these methods more complex 
compared to a CG method. Algebraic multigrid methods 
(AMG) automatically construct a sequence of coarser grids 
using information about the matrix A only. This makes AMG 
attractive as 'black box' solver [2,3]. Once the set of coarse 
grids is defined, AMG computes each of the consecutive 
approximations to (1) by going back and forward between the 
finest and the coarsest grid. 
 
Algebraic Multigrid Method as Preconditioner 
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 The general form of a stationary iterative method is 
 

 ( )x x M A x fk k k+ −= − −1 1  (2) 

 
where M denotes the preconditioner associated with the 
method. If the residual vector r Ax fk k= −  is taken as the 
right hand side, zero as initial solution and only 1 iteration 
step is performed, M −1  is applied to rk , which is exactly 
what is needed to use AMG as preconditioner for the CG 
method (AMGCG) [1]. 
 

COMPARISON OF THE DIFFERENT SOLVERS 
 
 To compare the total solution time of different solvers, a 
synchronous line-start motor excited with permanent magnets 
is taken as an example. Saturation plays an important role in 
the behaviour of this machine. Fig. 2 shows the initial mesh 
and fig. 3 the field plot of an intermediate adaptation step. 
 

 
Fig. 2: Initial mesh of a synchronous line-start motor (1092 nodes) 

 

 
Fig. 3: Field plot of a synchronous line-start motor (11164 nodes) 
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Fig. 4: Total solution times after each adaptation step 

 
Values of the nodal flux densities weighted with the energy in 
an element are used as an a posteriori error estimator. 13 
adaptation steps were calculated on a HP C-160 workstation. 
Fig. 4 shows the total solution times after each adaptation step 
for the different methods. To solve the system after 13 
adaptation steps (243572 unknowns), AMGCG required only 
23 CG steps in the last Newton step, while SSORCG and 
ICCG needed respectively 2438 and 2467 CG steps. 
 

CONCLUSION 
 
 Despite the extra cost of applying an algebraic multigrid 
method as preconditioner for the conjugate gradient method 
(AMGCG), the solution time is reduced by a factor of 2 for 
smaller problems and a factor of 6 for very large problems 
compared to symmetric successive overrelaxation as 
preconditioner (SSORCG) . The increase of 50 % (41 MB 
instead of 29 MB for 100000 nodes) in memory requirements 
for storing and solving the system of linear equations is 
therefore worth paying. As AMG can be used as a 'black box' 
solver, AMGCG is very well suited to solve 3D problems 
where solution times increase even more rapidly and the 
geometric construction of coarse meshes is even more 
problematic than in the 2D case. 
 

ACKNOWLEDGEMENT 
 
 The authors are grateful to the Belgian "Fonds voor Wetenschappelijk 
Onderzoek Vlaanderen" for its financial support of this work and the 
Belgian Ministry of Scientific Research for granting the IUAP No. P4/20 on 
Coupled Problems in Electromagnetic Systems. The research Council of the 
K.U.Leuven supports the basic numerical research. 
 

REFERENCES 
 
[1] R. Barrett et al., Templates for the Solution of Linear Systems: 

Building Blocks for Iterative Methods, SIAM Philadelphia, 1994. 
[2] J. Ruge and K. Stueben, Multigrid Methods, SIAM Philadelphia, 1987. 
[3] W. Briggs, A Multigrid Tutorial, SIAM Philadelphia, 1987. 


