

Numerical Optimization using Stochastic Search Algorithms and Finite Element
Function Evaluations in a Parallel Environment

Uwe Pahner, Kay Hameyer and Ronnie Belmans

KATHOLIEKE UNIVERSITEIT LEUVEN, DEPT. E.E. (ESAT), DIV. ELEN
Kardinaal Mercielaan 94, B-3001 Leuven, BELGIUM

Abstract - Stochastic optimization algorithms require

substantially more function evaluations compared to gradient
methods. This results in a long overall computation time.
However, the stochastic algorithms feature unmatched simplicity
in setting up the optimization problem. A reduction of the
computation time can be achieved with the parallel
implementation of the optimization procedure on a network of
heterogeneous computers. Here, a parallel implementation of the
Evolution Strategy is presented. Several load balancing and
scheduling schemes as well as the necessary adaptations to the
finite element (FE) data structures are discussed.

INTRODUCTION

An optimum design is defined as the best possible solution

for a given application. All design variables are determined
simultaneously to satisfy a set of constraints and optimize a
set of objectives, represented by a quality function. It is
widely accepted, that the main advantages of stochastic search
algorithms (Evolution Strategy, Simulated Annealing and
Genetic Algorithms) is their robustness, ease of use and
general application range [1]. Set-up and testing of a new
optimization problem (quality function, implementation of
constraints) requires far less effort compared to deterministic
algorithms. A drawback is their huge number of necessary
function evaluations, increasing the computation time. The
rapid enhancement of computer power and the availability of
new computer architectures (parallel machines) help to reduce
the overal computation time. An implementation using PVM
(Parallel Virtual Machine) is described here [2]. Combining
stochastic optimization algorithms and field simulation
techniques into an optimization environment allows the
creation of a user friendly design tool [3]. Necessary
adaptations to the finite element data structures and the
optimization algorithm will be described, before the parallel
implementation of the optimization procedure is discussed in
detail.

PARAMETRIC FINITE ELEMENT MODELS

A stand-alone, fully interactive and parametrized 2D FE-

package, embedding different solvers and post-processor
tools, has been developed. The 2D pre-processor includes all
features that are expected from a classical FE pre-processor,
but additionally provides all tools to set-up, test and control
optimization tasks, such as:

• definition and test of analysis procedures including
different types of solvers and post-processor routines,

• definition of constraints checks and normalizing
factors for the design variables,

• storage of the model and the procedure in a symbolic
format,

• automatic preparation of optimization tasks for a
parallel environment using PVM.

GENERAL PURPOSE OPTIMIZER

A general purpose optimizer has been developed, inheriting

different stochastic optimization algorithms, such as Evolution
Strategy, Simulated Annealing and Genetic Algorithms. The
optimizer can operate in an external mode. Therefore, it has
not to be adapted to different types of analysis procedure
(numerical, analytical) [3]. Typical for stochastic optimization
algorithms is the generation of independent sets of parameters
within one iteration. This allows a parallelization of the
optimization process.

PARALLEL IMPLEMENTATION OF THE OPTIMIZATION PROCESS

The parallel environment consists of a variable number of

computers in one network. A master process on one of the
machines controls slave processes on the other nodes of the
network. Fig. 1 outlines the implemented algorithm. All
beforehand defined procedures for the FE analysis together
with the parametric description of the model are distributed
amongst the local computers of the parallel environment at
start-up time. The symbolic descriptions reside local on all
machines during the whole optimization process. To reduce

PVM master
start

constraints ok ?

external
optimizer

no

pool of
 parameter
 sets

load balancing
until all sets are
evaluated

yes new set of
parameters

generation of
sets complete ?

yes

no

PVM slave
(execution of

analysis procedure)

machine 1..n
parameters

quality

stop

Fig. 1: Parallel implementation of the stochastic
search algorithm using PVM

the influence of the network load, the data exchange between
the master and the slave processes (during the optimization) is
limited to the updated values of the design variables, the value
of the quality function and the status of the single function
evaluation. The parameter pool is filled with n-sets of
parameters, representing the n-design candidates to be
evaluated in one iteration during the optimization. A new set
can only be generated after all qualities of the present iteration
are evaluated. These processes have to be spawn onto the
different machines. Towards the end of each iteration, a
situation may occur, were a slower machine could start a
function evaluation, which could take longer than the faster
machines would require to evaluate the remaining parameter
sets in the pool. This would unnecessarily increase the elapsed
optimization time. Also, the influence of third party loads
(other network users) can not be neglected in a realistic
networking situation (Fig. 2).

0

100

200

300

400

500

0 20 40 60 80 100 120
elapsed process execution time [s]

pr
oc

es
s

nu
m

be
r

HP C160
HP 730/66
HP 715/50 #3
HP 715/50 #1
HP 715/50 #2

Fig. 2: Influence of third party load on the elapsed function evaluation time

over 20 iterations (25 identical function evaluations per iteration)

Fig. 3 illustrates the effect of the different machine load
levels. Slower machines have longer idle periods (up to 50%
of the overall optimization time), because faster machines are
prefered towards the end of each iteration. However, the
overall runtime is reduced to 67% of the time the fastest
machine alone would need for this task.

84.21%
78.27% 77.35%

54.15%

96.63%

0%

20%

40%

60%

80%

100%

HP C160 HP 730/66 HP 715/50 #1 HP 715/50 #2 HP 715/50 #3
machine (node) types

pr
oc

es
so

r a
ct

iv
ity

 o
ve

r e
la

ps
ed

 e
xe

cu
tio

n
tim

e

Fig. 3: Effective function evaluation time per node (in percent of the total

computation time needed for the 500 identical evaluations shown in Fig. 2)

DYNAMIC LOAD BALANCING AND SCHEDULING

The aim of the parallelization of the optimization
procedure is to reduce the elapsed optimization time to a
minimum. Situations as shown Fig. 3 are not acceptable. The
elapsed computation time for one function evaluation not only
varies due to third party load, but different parameter sets also
lead to different function evaluation times. Dynamic load
balancing and scheduling are necessary to make optimum use
of the parallel environment. Apart from scheduling algorithms
based on the monitoring of the evaluation times, most
stochastic optimization algorithms offer another possibility to
reduce the optimization time: The number of function
evaluations per iteration may be varied to a small extent. This
allows long lasting function evaluations towards the end of an
iteration to be transferred to the next iteration. The optimum
use of all machines in the environment can now be assured.
Different scheduling schemes will be compared in the full
paper. Tests have shown that in a set-up with identical
machines (5 HP 715, no third party load), the down-scaling is
almost linearly depending on the number of machines
included. All machines have idle times of less than 3% and
the overall computation time is reduced to 20.5% of a single
machine execution. This can only be achieved due to the
minimized data exchange with the master process. The
exchanged data packages are of the size of some bytes,
whereas the FE data structures can reach several Mbytes
during the evaluation of the quality function.

CONCLUSION

A parallel implementation for the optimization of

electromagnetic devices has been developed. It is cost
effective, due to the efficient use of existing hardware. The
emphasis is put on the development and comparison of
appropriate load balancing and scheduling schemes, making
optimum use of the features of the stochastic search methods
in combination with the finite element analysis.

ACKNOWLEDGMENT

The authors are grateful to the Belgian “Fonds voor Wetenschappelijk

Onderzoek Vlaanderen” for its financial support of this work and the Belgian
Ministry of Scientific Research for granting the IUAP No. P4/20 on Coupled
Problems in Electromagnetic Systems. The research Council of the
K.U.Leuven supports the basic numerical research.

REFERENCES

[1] A. Gottvald, K. Preis, Ch. Mangele and A. Savini, "Global optimization methods

for computational electromagnetics," IEEE Transactions on Magnetics, vol. 28,
no. 2, 1992, pp. 1537-1540.

[2] A. Geist, A. Beguelin, J. Dongorra, W. Jiang, R. Manchek and V. Sunderam,
PVM: Parallel Virtual Machine, A Users' Guide and Tutorial for Networked
Parallel Computing, The MIT Press, Cambridge, Massachusetts, London,
England, 1994.

[3] U.Pahner, R.De Weerdt, K.Hameyer, R.Belmans: "A parametric environment for
the optimization of electromagnetic devices" 3rd international workshop on
Electric & Magnetic fields , Liège, Belgium, May 6-9, 1996, pp.177-182.

