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Abstract - Stochastic optimization algorithms require 

substantially more function evaluations compared to gradient 
methods. This results in a long overall computation time. 
However, the stochastic algorithms feature unmatched simplicity 
in setting up the optimization problem. A reduction of the 
computation time can be achieved with the parallel 
implementation of the optimization procedure on a network of 
heterogeneous computers. Here, a parallel implementation of the 
Evolution Strategy is presented. Several load balancing and 
scheduling schemes as well as the necessary adaptations to the 
finite element (FE) data structures are discussed.   
 

INTRODUCTION 
 
An optimum design is defined as the best possible solution 

for a given application. All design variables are determined 
simultaneously to satisfy a set of constraints and optimize a 
set of objectives, represented by a quality function. It is 
widely accepted, that the main advantages of stochastic search 
algorithms (Evolution Strategy, Simulated Annealing and 
Genetic Algorithms) is their robustness, ease of use and 
general application range [1]. Set-up and testing of a new 
optimization problem (quality function, implementation of 
constraints) requires far less effort compared to deterministic 
algorithms. A drawback is their huge number of necessary 
function evaluations, increasing the computation time. The 
rapid enhancement of computer power and the availability of 
new computer architectures (parallel machines) help to reduce 
the overal computation time. An implementation using PVM 
(Parallel Virtual Machine) is described here [2]. Combining 
stochastic optimization algorithms and field simulation 
techniques into an optimization environment allows the 
creation of a user friendly design tool [3]. Necessary 
adaptations to the finite element data structures and the 
optimization algorithm will be described, before the parallel 
implementation of the optimization procedure is discussed in 
detail.  

 
PARAMETRIC FINITE ELEMENT MODELS 

 
A stand-alone, fully interactive and parametrized 2D FE-

package, embedding different solvers and post-processor 
tools, has been developed. The 2D pre-processor includes all 
features that are expected from a classical FE pre-processor, 
but additionally provides all tools to set-up, test and control 
optimization tasks, such as: 

 

•  definition and test of analysis procedures including 
different types of solvers and post-processor routines,  

•   definition of constraints checks and normalizing 
factors for the design variables, 

•  storage of the model and the procedure in a symbolic 
format, 

•   automatic preparation of optimization tasks for a 
parallel environment using PVM. 

 
GENERAL PURPOSE OPTIMIZER 

 
A general purpose optimizer has been developed, inheriting 

different stochastic optimization algorithms, such as Evolution 
Strategy, Simulated Annealing and Genetic Algorithms. The 
optimizer can operate in an external mode. Therefore, it has 
not to be adapted to different types of analysis procedure 
(numerical, analytical) [3]. Typical for stochastic optimization 
algorithms is the generation of independent sets of parameters 
within one iteration. This allows a parallelization of the 
optimization process. 

 
PARALLEL IMPLEMENTATION OF THE OPTIMIZATION PROCESS 

 
The parallel environment consists of a variable number of 

computers in one network. A master process on one of the 
machines controls slave processes on the other nodes of the 
network. Fig. 1 outlines the implemented algorithm. All 
beforehand defined procedures for the FE analysis together 
with the parametric description of the model are distributed 
amongst the local computers of the parallel environment at 
start-up time. The symbolic descriptions reside local on all 
machines during the whole optimization process. To reduce 
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Fig. 1: Parallel implementation of the stochastic  
search algorithm using PVM 



 

 

the influence of the network load, the data exchange between 
the master and the slave processes (during the optimization) is 
limited to the updated values of the design variables, the value 
of the quality function and the status of the single function 
evaluation. The parameter pool is filled with n-sets of 
parameters, representing the n-design candidates to be 
evaluated in one iteration during the optimization. A new set 
can only be generated after all qualities of the present iteration 
are evaluated. These processes have to be spawn onto the 
different machines. Towards the end of each iteration, a 
situation may occur, were a slower machine could start a 
function evaluation, which could take longer than the faster 
machines would require to evaluate the remaining parameter 
sets in the pool. This would unnecessarily increase the elapsed 
optimization time. Also, the influence of third party loads 
(other network users) can not be neglected in a realistic 
networking situation (Fig. 2).  
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Fig. 2: Influence of third party load on the elapsed function evaluation time 

over 20 iterations (25 identical function evaluations per iteration) 
 

Fig. 3 illustrates the effect of the different machine load 
levels. Slower machines have longer idle periods (up to 50% 
of the overall optimization time), because faster machines are 
prefered towards the end of each iteration. However, the 
overall runtime is reduced to 67% of the time the fastest 
machine alone would need for this task. 
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Fig. 3: Effective function evaluation time per node (in percent of the total 

computation time needed for the 500 identical  evaluations shown in Fig. 2) 
 

DYNAMIC LOAD BALANCING AND SCHEDULING 
 

The aim of the parallelization of the optimization 
procedure is to reduce the elapsed optimization time to a 
minimum. Situations as shown Fig. 3 are not acceptable. The 
elapsed computation time for one function evaluation not only 
varies due to third party load, but different parameter sets also 
lead to different function evaluation times. Dynamic load 
balancing and scheduling are necessary to make optimum use 
of the parallel environment. Apart from scheduling algorithms 
based on the monitoring of the evaluation times, most 
stochastic optimization algorithms offer another possibility to 
reduce the optimization time: The number of function 
evaluations per iteration may be varied to a small extent. This 
allows long lasting function evaluations towards the end of an 
iteration to be transferred to the next iteration. The optimum 
use of all machines in the environment can now be assured. 
Different scheduling schemes will be compared in the full 
paper. Tests have shown that in a set-up with identical 
machines (5 HP 715, no third party load), the down-scaling is 
almost linearly depending on the number of machines 
included. All machines have idle times of less than 3% and 
the overall computation time is reduced to 20.5% of a single 
machine execution. This can only be achieved due to the 
minimized data exchange with the master process. The 
exchanged data packages are of the size of some bytes, 
whereas the FE data structures can reach several Mbytes 
during the evaluation of the quality function.  

 
CONCLUSION 

 
A parallel implementation for the optimization of 

electromagnetic devices has been developed. It is cost 
effective, due to the efficient use of existing hardware. The 
emphasis is put on the development and comparison of 
appropriate load balancing and scheduling schemes, making 
optimum use of the features of the stochastic search methods 
in combination with the finite element analysis.  
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