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Abstract — The @lculation of coupled field problems in
order to dbtain realistic numerical models becomes more and
more important. Coupling strategies require a flexible data
structure to access the required material data. An objed
oriented data structure offers sveral features proving to be
useful to store these material characteristics. This includes
different tensor representations of the daracteristic and
different mathematical descriptions as tables and formulae.
Hence an easy and robust environment for the CAD-
programmer beames available.

The use of these data structuresis demonstrated by two typical
coupled magneto-thermal and a eledro-thermal computations.

Index terms — Finite dement methods, objed oriented
pro-gramming, motor drives, losss, eddy currents, dieledric
losses

|.INTRODUCTION

The fast availability of the orred material
characteristics in the appropriate shape speals up the time
for matrix asembly necessry in finite dement method
approximations or for post-processng. In coupled problems,
a lot of parameters related to several physical phenomena
have to be known. These parameters have different physical
representations ranging from just a real number to a large
symmetrical complex tensor. The mathematical descriptions
of the numerical values take different forms, for instance an
analytical formula or a multidimensional table.

Most characteristics depend on several physical variables
making non-linear couplings a necessty. A data structure
suited for handling the interdependencies and all the possble
physical and mathematical representations can simplify the
solution processof coupled problems.

I1.COUPLING STRATEGIES

Coupling can be accomplished in two different ways: full
coupling (numerical strong) and cascade oupling (numerical
weak). Both strategies use different approaches in linking
the systems of coupled partial differential equations
describing the different physical effeds of the problem.

Full or Numerical Strong Cougding

A very obvious way isto diredly treat the mupled system
by solving the mmplete set of non-linear equations. After
discretization, this may lead to an extensive system of
algebraic eguations describing phenomena with different
time

Manuscript recéved March 31 1997,

J.Driesen, +32/16/32.10.20, fax +32/32/16/32.19.85, johan.driesen@
esat.kuleuven.ac.be, http://www.esat.kuleuven.ac.be/den/den.html. J.Driesen
hdds a research assgtantship of the Belgian “Fonds voor Wetenschappelij k
Onderzoek - Vlaanderen”



constants [1]. To linearize this coupled system of equations
a database mntaining sufficient information to determine the
interdependencies (partial derivatives) of the materia
characteristics on the solution variables hasto be present.

Cascade or Numerical Weak Couping

An aternative strategy consists in the decomposition of
the problem into several subprobems, each with the
appropriate pre- and post-processng, solved sequentialy in
an iteration loop uwntil convergence is reached. Inter-
mediately, the material parameters are adjusted based on the
solutions of the previous steps[2],[3].

Within this weak coupling strategy, two types of para-
meters on which the material data ae depending can be
iden-tified. First, the externa parameters are derived from
the previous calculations. These parameters do not change
during the following calculation step. On the other hand, the
internal parameters are the solution variables. They may
change during the alculation and have to ke treated

properly.
111 .OBJECT ORIENTED MATERIAL DATA STORAGE

Unlike the dasscal structured programming method
linking functions and the appropriate variables, objed
oriented programming languages, like C++ [4], place the
data into the center of the programme design [5]. Thisoffers
the following advantages:

» Data Hiding Data structures are encapsulated and can
only be accesed through "member functions' or
"overloaded operators'. This offers a robust and rigid
structure to proted the data from unwanted changes.
Advanced compil ers may produce a fast inline ading of
the functions accessng the data.

» Polymorphism: In classcal programming alot of explicit
“if-then-else”-like dauses would have to be dedked to
determine the kind of mathematical description of the
material and the related evaluation function or operator.
In an objed oriented structure, the appropriate functions
are immediately and implicitly determined by means of a
virtual function table. All the programmer hasto know is
how to call a kind of “give value()” function becoming
subsequently overloaded with the crred function. This
enables a programmer to implement abstract and general
formulae.

» Inheritance The ohed oriented library can very quickly
be widened by code due to the inheritance property. The
existing objeds and their properties are “inherited” and
modified, to implement new kinds of material
characteristics. The software developing programmer is
forced to implement a minimum set of necessry
functions becuse of the virtual function system and the
abstract classes.

IV.IMPLEMENTATION

The obed oriented library containing the material
characteristics is programmed by means of C++-classs. It
consists of two oljed structures: the tensor-objeds, providing
the physical structure, and the charac-objeds, containing the
structure to implement different mathematical material
representations.

Tensor-Objeds

Material data is retained in a class hierarchy (fig. 1).
The base dasstensorall is a pure abstract class The other
clases are inherited from it. It contains virtual functions
meant to return a numerical value or to copy the ohjed. The
derived classs enable the implementation of properties
represented by a single value (tensorconst), a diagonal tensor
(tensordiag) containing two values in case of two-
dimensional smulations or six for 3D, or a symmetrical
tensor (tensorfull) containing three or six elements. These
“values’ are stored in the structure as charac-objeds.

The tensorlist is a spedal structure used in FEM-com-
putations. It offers a dynamic structure to store material data
per mesh element, independent of the kind of representation
of the material characteristic. This gructure is not only used
in certain coupled FEM-computations, but also in non-
coupled calculations, for instance to “freeze’ the saturation
of an eledromagnetic devicein a linearized operation point
to investigate saturated harmonic fields.

tensorall

tensorlist

tensorconst tensordiag tensorfull
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Fig. 1: Structure of the Tensor-Objed.
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Charac-Objeds

The abstract class characall (Fig. 2) contains virtual
functions representing the basic operations. The inherited
classes enables the storage of constant values, expressons
(formulae) or tables with the appropriate interpolation
functions. Most of the time, bicubic spli nes are implemented
for this purpose. Once the spline mefficients are @lculated
in the objed congructor, it is easy to oltain interpolates,
derivatives or integrated values by calling a smple function.
The dispatch of the different ways of material representations
is done by the function table of characall.



The characproc objed is a speda structure to be used
for material descriptions depending on the interval in which
a parameter is stuated, e.g. different formulations below or
beyond the Curie temperature.

characall
characproc
characconst characexpr charactable
eg. eg. eg.

Fig. 2: Structure of the Charac-Objed.
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User Interface

A programmer using these data structures does not have
to know about the implementation behind it. Even the fact
whether the data originally was provided in table or formula
format is of secondary importance Therefore, the only thing
that has to be @mded by the programmer into the wde is the
cal to the wngructing functions (in the C++
implementation, constructors sarching for the appropriate
database file mn-taining the daracteristic representations,
hereafter the struc-tures are set up). Then, only smple cls
masked behind functions or operators such as round or
squared brackets on the right place in the de (eg.
regionk].cond) ) are necessary to oltain the desired
numerical value. Thus, a natural lodking notation of the
formulae is used, even clear for non-programming
specialists.

In this way, the described data structures are used in dif-
ferent FEM-solvers, post-processng, visualizaion code and
the wupling programmes that form the skeleton of a cascade
coupled algorithm as discussed before. Hence it is ensured
that the same data values are used everywhere during the
execution of the programs

Code Organi zation and Implermrentation

Most coupled simulations involve solving Laplacelike
equations. It isvery profitable to use acomnon gereral base
FEM-code for Laplacelike ejuation solving. The flexibility
of the solver lies in the material handling, providing the
right coefficients to solve the equations at stake describing
the thermal, eledric or magnetic problem. By using an ohjed
oriented material implementation combined with the
mathematical code, a relatively small and efficient flexible
coupled solver is obtained.

By reusing the same materia library for the solvers,
coupling programs and post-processors, the mnsistency of
the material propertiesin the mdeis guarantee.

The st of this implementation is a small overhead of
al-located memory, originating from the cnstruction of the
virtual function tables. In general, the material diversity
within the models is much smaller than the number of
elements, so usualy this is no probdem. The run-time
determination of the right member-function causes me
overhead in computation time. A comparable flexible ade
in a non-objed oriented language would neel the same
overhead in computation time.

IV.APRLICATION EXAMPLES
Magnreto-Thermal Couped Computation Problem

The materials used in magnetic devices are often
temperature sensitive. The flux from permanent magnets, in
the rare-earth material, depends on the temperature. All
mag-netic materials lose their properties beyond a certain
transiti on temperature, like the Curie temperature.

On the other hand, these materials are often a source of
heat, since they show ferromagnetic loses. To represent
these, tables or formulae with matched coefficients may be
used [6]. These heat sources and joule losses from eddy
currents are usualy unwanted in machines based on a
driving eledro-magnetic field. However, sometimes these
effeds can be used postivedy in induction heating
applications.

Ex. 1: Induction Machine

The total behavior of induction machines is governed by
the foll owing 2D-differential equations:

o(T
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with A, the magnetic vedorpotential (0% A=B) and V, the
voltage appli ed acrossconducting regions.

The first equation leads to the force-generating magnetic
field. The second equation describesthe thermal field and its
sources. For this type of machines, the representation of the
reluctivity tensor is of large importance, since the saturation
forms a highly non-linear asped of the machine. This makes
the simulation a highly non-linear calculation. The @n-
vergence of these problems isinfluenced by the derivatives of

the non-linear parameters, particularly v(B), so acorred in-
terpretation of this characteristic is recommended.

The temperature dependence of the mnductivity o
influences bath equations and makes the resulting system of

O(k(T)oT) ==



equations grongly coupled. It also influences the algebraic
circuit equations necessary to represent the end-effeds [7].
This characteristic has a large influence on the total
convergenceaswell.

The reluctivity v can be an anisotropic tensor described
by spline-interpolated 2D-tables with inputs B(A) and T. The
eledrical conductivity o is generally described by a rational
function of T, whereas the thermal conductivity k is described
by a procedure approximated by a constant below a certain
transition temperature and depending on T abowe this tempe-
rature. However in amost all machines, this temperature is
never reached (unlike induction heating applications).

Figure 3 shows such a calculation. The machine under
study is a 4-pole 400 KW traction induction motor [8]. The
hot spots in the machine @n be determined and a more
acaurate knowledge of the machine behavior is obtained by
considering the thermal effeds.

@ (b)
Fig. 3: 4 pde induction motor (a) plot of the magretic fidd and (b) the
isothermals obtained by the thermal computation

Ex. 2: Permanent Magret Machine

The behavior of permanent
described by equations (2):

magnet machines is

O(v(AT)DA) = s O(VreyM)
o @
J
O(k(T)OT) = ——=- pee

o(T
with A the magnetic vedorpotential (O x A= B).

This calculation shows a lot of similarities with ex.1.
Here, the permanent magnet term introduces a strongly
temperature dependent tensor. This temperature dependence
is typical for cetain types of materials. Considering the
ferromagnetic properties, ferrites usualy have positive
temperature efficients, whereas rare-earth materials may
have negative temperature mefficients. Thisis described in
tables or simplified in formulae. In either way, it has to be
chedked (in a procedure) whether the magnet still produces a
field for a given temperature and whether it is not de
magnetized irreversibly yet.

The example in figure 4 can only be @ culated corredly
in a coupled way. It represents asmal motor for automotive
applications. Therefore its behavior has to be simulated at
different environment temperatures.

@ (b)
Fig. 4: (a) Plot of the magnetic flux linesof a small permanent magnet machine,
(b) isothermal lines

Eledro-Thermal Couded Calculation

Another application of extensive mupled simulations are
the predse modeling of eedric fields and their side-effeds,
the dieledric loses. These @use a change in material
temperature, which causes material parameters, like the
didedric loss factor, to change as well. In this case, the
heating effed is desired (capecitive reaters).

Ex. 3: Capacitive Polymer Welding

Capacitive heating is an ewmnomic way to heat up
materials with certain dieledric properties. This principle of
heating can be applied locally with spedal eledrodes and the
heat production is controlled by changing the applied voltage
and/or frequency. The simulation isbased on the @upling of
equations (3) and their boundary conditions:

O(e (f)ov) =0

O(k(T)0T) = —w(e, tan3)(T, f)E?
with E=-0V.
@

3

N

(b) |

() ‘

Fig. 5: (a) Outline of the heating ingtallation, (b) eedrical flux lines during
welding polymers by capecitive heating, (c) isothermal lines

In this case, the oupling can be described in a one way
diredion, sincether is no dired temperature feelback of the



thermal eguation to the éedric potential equation. Hence a

faster convergence @n be epeded, but ill a corred
representation of the lossfactor is necessry to oltain a fast
convergence of the thermal equation.

In the example of fig. 5, the welding of two thin polymer
sheds is represented. In order to study the temperature
distribution, which highly determines the quality of the
resulting shed material, a coupled computation is performed.
In this way, the form, position and driving parameters of the
el ectrodes can be optimized.

V.CONCLUSION

Objed oriented programming techniques are well -suited
for the implementation of material characteristicsin different
representations as required to perform a flexible cupled
problems analysis. Features such as data encapsulation,
virtual functions, overloaded operators and polymorphism
can be used to enable the flexible and robust generation of
programme mde.

A data structure, which is implemented in C++ code is
presented and its use is demonstrated by means of magneto-
thermal and eledro-thermal simulations.
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