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 Résumé - On présente une théorie d’arbre généralisée en vue de traiter tous les types de 
connections possibles entre des conducteurs pleins et bobinés dans un circuit électrique 
couplé avec une model éléments finis magnétique. Un Signal Flow Graph généralisé est 
utilisé pour déterminer les inconnues courants et tensions utilisé dans une description 
symétrique des équations de circuits. La méthode évoquée est appliquée à un exemple. 
 
 Abstract - A generalized tree theory is presented in order to deal with all possible 
connections of solid and stranded conductors in an electric circuit coupled with a magnetic 
Finite Element model. A generalized Signal Flow Graph is used to determine the unknown 
currents and voltages necessary to describe the circuit behaviour in a symmetric way. The 
method is applied to an example. The aim of this paper is to state a general network theory 
able to deal with all possible connections of voltage and current sources, impedances, solid 
and stranded conductors leading to a symmetric and compact coupling matrix without zero 
diagonals. 

1. INTRODUCTION 
External circuit connections were first considered in 1976 [1]. A lot of 
formulations are made in the 1980's [2]. During the past decade [2,3,4,5] 
the coupling of field and circuit equations has become well-known and 
generally applied. However, some implementations deal with only one 
conductor type, solid or stranded respectively, [5,6,7] or do not allow 
connected graphs containing both types [4]. Here, a new generalized 
formulation is systematically derived to consider both, stranded and solid 
conductors simultaneously. For various reasons some reported 
approaches do not symmetrize the matrix [8]. On the other hand, if 
symmetrized, it is done on the matrix level only [9]. The aim of this 
paper is to state a general network theory, able to deal with all possible 
connections of voltage and current sources, impedances, solid and 
stranded conductors leading to a symmetric and compact coupling matrix 
without zero diagonals. It is shown that the graph theory offers a general 
way of describing the field-circuit coupling problem. Contracting the 
graph leads to a reduced and symmetric system in a natural way. The 
advantage of a symmetric matrix is a reduced computation time. 

2. FORMULATION 
The magnetic induction B  and the electric field E  are modelled in terms 
of the magnetic vector potential A  and the electric scalar potential V  
[10]. In stranded conductors no skin effect is involved. Consequently the 
current density J  is assumed to be constant. In the case of a 2D time-
harmonic problem, the formulations and their associated discrete forms 
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are in non-conducting regions (1), stranded conductor regions (2) and 
solid conductor regions (3) respectively 
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where the elements are determined by 
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ν  is the magnetic reluctivity and l  is the length of the conductors in the 
FE model. N t  is the number of strands, ∆ str  is the total area of strands 
in the FE model and Istr  is the current per strand. σ  is the conductivity 
of the solid conductor material, ∇V  is the gradient of the voltage and 
Vsol  is the voltage drop in the solid conductor. Ni  is the form function 
associated with node i . 

3. CIRCUIT CONDITIONS 
If an external circuit is modelled, Istr  and Vsol  are not longer known. 
The righthandsides of  (2) and (3) go to the lefthandsides. Extra equations 
are added to the system. It is obvious that the best way to couple a 
magnetic field based on a magnetic vector potential formulation with an 
external circuit, is to define an unknown voltage Vsol  for each solid 
conductor, respectively an unknown current Istr  for each stranded 
conductor [8]. The voltage drop of a series connection of N t  strands is 
given by 
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where f  is the fill factor of the stranded conductor. The voltage drop of 
the stranded conductor is splitted up in a resistive part R Istr str  and an 
inductive part Vind . In the electric network topology a stranded conductor 
can consequently be replaced by a series connection of an impedance 
branch and a controlled voltage source. 
The total current through a solid bar is given by 
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where ∆ sol  is the area of the solid conductor in the FE region. The total 
current through the solid conductor is distinguished in a resistive part 
G Vsol sol  and an inductive part I ind . A solid conductor can be seen as a 
parallel connection of an admittance branch and a controlled current 
source. 
In a time-harmonic 2D formulation, multiplying (5) and (6) with the 

symmetrizing factor χ ω= j
l  yields in the circuit conditions 

P A V R Ii i
i

. . . .+ − =∑ χ χstr str str 0  (7) 

Q A G V Ii i
i

. . . .∑ + − =χ χsol sol sol 0  (8) 

This important multiplication causes the desired symmetry of the 
coefficients Pi  of the unknown Ai  in (7) with the same coefficients of 
the unknown Istr  in (2) and the coefficients Qi  of the unknown Ai  in 
(8) with the same coefficients of the unknown Vsol  in (3). 

4. EXTERNAL CIRCUITS 
An external circuit is taken into account by defining extra circuit 
unknowns and circuit equations. Dependent on the method, unknown 
currents or voltages are chosen. The tableau analysis considers all 
possible equations. A Modified Nodal Analysis (MNA) produces a 
smaller set of equations in terms of nodal voltages. Stranded conductors 
and voltage sources results in extra unknown currents and their 
corresponding equations. A symmetric system is obtained by eliminating 
those currents (Compact Modified Nodal Analysis). However, the 
sparsity of the FEM-equations for the stranded conductor areas 
decreases [2]. 
A loop is a circuit path that has the same begin and end node. A cutset is 
a set of branches which removal splits the circuit in two parts. A tree is a 
set of branches that connects all nodes and has no loops. The set of the 
remaining branches is the cotree. A member of the cotree is a link. A 
fundamental loop is a loop formed by one link and a set of tree branches. 
A fundamental cutset is a cutset formed by one tree branch and a set of 
links [11]. 
Mixed stranded and solid conductors in a network cause problems to 
describe the circuit. Matrices obtained by a separate analysis of stranded 
and solid conductors can not be arranged. Here the circuit theory 
indicates a problem. In Fig. 1a solid conductors form a loop. In Fig. 1b 
stranded conductors form a cutset. Replacing the magnetic branches, as 
indicated in (5) and (6), fails. In this case cutsets containing a stranded 
conductor branch include solid conductor branches. Loops holding a 
solid conductor branch include stranded conductor branches. 
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a) b)  Link

Tree branch

 

Fig. 1. a) Star-connected stranded conductors and b) solid conductors connected in 
parallel. 

5. SIGNAL FLOW GRAPH 
A topological method for circuit analysis is a technique which derives 
parameters describing the circuit behaviour from the structure of a graph, 
associated with the network. Some topological methods are the Signal 
Flow Graph method and the tree-enumeration method. In this paper, a 
description based on the Signal Flow Graph of the electrical circuit will 
lead to a coupled matrix system of magnetic FE and circuit equations. A 
Signal Flow Graph (SFG) is a weighted directed graph representing a 
system of linear equations. The SFGs of the coupling equations (5) and 
(6) are seen in Fig. 2. 

Rstr
Istr Vstr

Ai

− Pi −
Pi
χ

   

Gsol
Vsol Isol

Ai

− Qi Qi
χ

 

Fig. 2. SFG of the electric-magnetic coupling terms. 
 
The network consists of independent voltage sources, solid conductors, 
immittance (impedance or admittance) elements, stranded conductors and 
independent current sources. It is assumed that the voltage sources do not 
contain loops and the current sources do not include cutsets. 
A tree is built following a privileged order: independent voltage sources, 
solid conductors, admittances and stranded conductors. The order of 
preference of cotree elements is: independent current sources, stranded 
conductors, impedances and solid conductors. Some stranded conductors 
may be tree branches. Some solid conductors may be links. As a 
benchmark model consider a single phase induction motor. Two stranded 
conductors are connected in series and fed by a voltage source, two solid 
rotor bars are short-circuited (Fig. 3). The bold lines indicate tree 
branches whereas normal lines are representing links. 
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V

str1 str2 sol1 sol2

 
Fig. 3. Enumerated circuit of a single phase induction motor. 

 
The SFG is built by putting a node for each tree branch voltage and link 
current. Extra nodes are added for unknown currents of stranded 
conductors that are part of the tree and solid conductors that are part of 
the cotree. The Kirchoff Current Law (KCL) and the Kirchoff Voltage 
Law (KVL) are indicated by arrows between the nodes. A independent 
node is a node with only outwards oriented arrows. A dependent node is a 
node with at least one inwards oriented arrow. A sink node is a dependent 
node with only inwards oriented branches [12]. Fig. 4 shows the not-
connected primitive SFG of the benchmark model. 
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Fig. 4. Primitive Signal Flow Graph of the single phase induction motor. 
 
The SFG represents a non-symmetric coupled system. Table I shows the 
equivalences between the SFG and matrix calculus. The fundemental 
cutset matrix D  represents the incidences of the circuit branches to the 
fundamental cutsets. The fundamental loop matrix B  represents the 
incidences of the circuit branches to the fundamental loops [13]. Each of 
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the matrices is partitioned in parts associated with the stranded 
conductors that are links ("str"), those that are tree branches ("str*"), the 
solid conductors that are tree branches ("sol"), those that are links 
("sol*"), the independent sources ("i" and"v") and the immittance tree 
branches ("T") and links ("L"). 
 

Table I. Equivalence between circuit theory, Signal Flow Graph and matrix calculus. 
Circuit Analysis Signal Flow Graph Matrix notation 
Kirchhoff Current Law current nodes D I. = 0  
Kirchhoff Voltage Law voltage nodes B V. = 0  
Branch Relations vertical connections V R I= . ; I G V= .  
cutset transformation eliminate Vstr* , Istr*  I D I D Istr* str*,i i str*,str str= − −. .  
loop transformation eliminate Vsol* Isol*  V B V B Vsol* sol*,v v sol*,sol sol= − −. .  
compacting eliminate Vstr , VL , Isol , IT  V Z IL L L= . ; I Y VT T T= .  
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Fig. 5. Compact Signal Flow Graph of the single phase induction motor. 
 
The system is contracted and symmetrized in three steps. 
1. The currents of the stranded conductor tree branches are eliminated by 

a partial cutset transformation (Table I). 
2. The voltages of the solid conductor links are eliminated by a partial 

loop transformation (Table I). 
3. Finally, eliminating the tree branch currents and the link voltages 

(Table I) leads to a Compact Signal Flow Graph (CSFG) (Fig. 5) 
representing a symmetric coupled field-circuit matrix. 
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where K  is the FE matrix constructed as in (1), (2) and (3), A  is the 
column of the unknown magnetic vector potentials, 

H P D I Q B V= +str*
T

str*,i i sol*
T

sol*,v v. . . .  (9a) 

[ ]M P B P 0 Q D Q 0= − − +str str,str* str* sol sol,sol* sol*. .  (9b) 
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K  is symmetric [10]. S  is symmetric because of the property 
B Dx,y y,x

T= −  [11] and due to the fact that R str , R str* , Gsol , Gsol*, 
ZL  and YT  are diagonals. 

6. SOLVING THE SYSTEM OF LINEAR EQUATIONS 
The matrix obtained for a 2D time-harmonic solution coupled with an 
electric circuit described with the proposed method is complex, 
symmetric, has no zero diagonal elements but is not-Hermitian. However, 
the FEM block is positive definite and the circuit coupling block is 
negative definite [2]. Therefore, the Conjugate Gradient (CG) method can 
not be used. Other suggestions are the BiConjugate Gradient (BiCG) 
method, the Conjugate Gradient method on the Normal Equations 
(CGN), other orthogonalizing Krylov-subspace methods and Block 
Elimination Schemes (BES) [9].  In the example, it is shown that the 
CGN method is faster when compared to the BiCG method. 
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2D FEM model
of the induction
machine

Tree branch

Link

a) b)  

Fig. 6. Electric circuit of a) the stator and b) of the rotor of an induction motor. 
 

 

Stranded conductor

Solid conductor

 

Fig. 7. Flux line plot of the time-harmonic 50 Hz solution of a loaded induction motor. 
 

7. EXAMPLE 
The circuit in Fig. 6 describes a voltage excitation of the stator winding 
and the connection of ten rotor bars with end-rings including end-effects 
of a four pole induction motor. Both stranded and solid conductors are 
present. A flux line plot of the time-harmonic solution is shown in Fig. 7. 
The numbers of circuit equations for several topological methods are 
presented in Table II. The new approach results in a smaller and 
symmetric system of equations. This allows the use of simple and well-
known iterative solvers. 
 

Table II. Number of circuit equations. 
Circuit Analysis Tableau MNA CMNA SFG 

  Number of circuit equations 166 46 43 31 
  Approprate solvers GMRES GMRES CGN, BiCG CGN, BiCG 
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8. CONCLUSIONS 
A new and generalized approach for field-circuit coupling is presented 
considering both types of conductors simultaneously, stranded and solid 
respectively. The dependences of field unknowns and circuit unknowns 
are represented by a Signal Flow Graph. Difficulties due to strange circuit 
connections are overcome by appropriate transformations of the graph. 
Matrix operations equivalent to the graph transformations are reducing 
and symmetrizing the coupled system. The method is successfully 
applied to a time-harmonic 2D calculation of a loaded induction machine. 
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