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Higher accuracy of 3D finite element solutions for field and force computations
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of the field quantities and forces in three-dimensional
finite element models is presented. Solving a local

Dirichlet problem enhances the accuracy of derived field
quantities using already computed potentials. Derivatives

and thus the values of flux density are calculated
analytically in order to improve their order of
convergence. A Fourier series is used to represent the

14 Tax
local field solu

problem. Test examples demonstrate the behaviour of the
proposed method.
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The conversion of useful energy

devices takes place in the air gap only. Numerical
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computation techmques as the ﬁmte element method (FEM)
are in common use to evaluate the essential field quantities
and generated forces. To predict the forces and thus the

in electromagnetic
field

i

hehaviour of the electromagnetic device the highest possible
accuracy of the solution is required. Particular attention must

be paid to the computation of the air gap quantities of the
flux density distribution and magnetic field strength. The
quantities are derivatives of a potential
The dlm(‘nl!v is found in the fact that the FEM
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meniioned
formulation. The difficult
approximates an arbrtrary potential instead of obtaining the
exact solution of a problem [1]. Noting this and assuming a
small value of h as the maximum characteristic diameter of a
finite element, the FEM is convergent of order q+1. The
constant g describes the polynomial order of the elements
used With € as the global error, the order of convergence for
the potential solution is

e <C-nmt (1

"The factor Cis independent from the size h of the elements
and depends only on the

* type of discretization

e choice of shape function

* smoothness of the exact solution
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: he convergence protb
transferred into an approximation problem. Using

shape functions of first order the rate of convergence will be
O(h’ ) Denvmg the ﬁe]d quantities from the potential
sults in a rate of convergence J(#)
for those guantities ie. when compared to the potential
solution a loss in accuracy of order one. By using those field
quantities e.g. for force calculations, this inherent inaccuracy
consequently influences the results. This fact identifies the
difficulty obtaining accurate field quantities as a problem of

linear

the order of convergence of the numencal method used.
By using an adaptively A-refined FEEM discretization, the
size of A varies from eiement to element. In this case, the

order of convergence can be exp

freedom (DOF) of the (finite
O(h*)= O(DOF ™).

To surmount the loss in accuracy shape functions of higher
order can be used. On the other hand, this would result in fast
increasing computational expenses.
in computation time a good !radc~()ff n
computation time is the use of linear shape functions and a
local solution obtained by an analytical formulation a
potentiai interpolating function and thus anaiytically derived

quantities of the order of accuracy. When
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element mes

To avoid a large growth

accuracy and

came
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analysing electromagnetic devices mainly local values of the
field quantities and the forces are of interest, so the proposed
local solutions does not restrict the procedure of analysis.
Starting from the
dimensional field problem inside a circle by given potentials
as the boundary values on its circumference analytically [2]-
[4] to three-dimensional fields, the local field is computed
inside a spherical volume. Again a Fourier series is used to
obtain an analytical representation of the derivatives mside
the sphere to avoid the loss in order of convergence and
accuracy. The beforehand computed potential values using
the FEM are assumed to be the boundary values of the local
field problem and they are equally distributed on the surface

idea to approximaie ihe local iwo

of the spherical volume to compute the field values in the
centre of the sphere analytically.

Using an existing FEM potential solution the proposed
method describes a post-process operator practically applied
to the air gap region of an electromagnetic device. No
restrictions concerning the finite element discretization are
assumed. The proposed method is independent of the finite
element mesh inside the domain and the resnits obtained are
converging against the values obtained by the classical
evaluation of the solution

potential using  numerical

denivatives if a very rough discretization or not suitable
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parameters e.g. the number of boundary potential values or
the radius of the spherical volume are chosen. The
dependence of accuracy of the enhanced field solution on the
necessary parameters to define the local field problem is
discussed and the suitability of the proposed method are
demonstrated by a test example.

For a more accurate force calculation the aim is to improve
the results of an existing field solution by a local post-

process. The idea is to solve the three-dimensional Laplace
s}

r the magnetic scalar potential u

lu APu Fu
— 4 =

Vig=
s S e

0 (2)
in source free and homogenous areas i.e. in the air gap of an
electromagnetic device starting with an existing potential

solution 1. The local field ?rnhlpm is now defined hv the

known potential values equally distributed at the surface of a
sphere assumed to be the boundary potential values of the
field problem. According to the co-ordinate

x =rsinfcos¢

y =rsinfsing

—
e
S

z=rcosf

a @pherical co-ordinate system is applied (Fig 1).
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mng the 1 apmcc equauon {Z) with the transformation 3}

yiclds
lrlr »ﬂ»(rz @‘1 + - L2 {smﬁ ﬁq 1 ?7"‘ - 0.
re l_ﬂr\ ar) sm0 (’()\ Y/ sin 0{% ]
(4)
Applying  w(r,0.6)= R(r) - ©(0)-®(4) to (4) and the

separation of the variablesr, 0 and ¢, a general form of the
functions R(r), ©®() and ®(¢@) depending on the potential u

Fig 1 Sphenical co-ordinate system

can be rewritten. Every solution of the Laplace equation (4),
being finite for all @, is a solution of

1M(r,0,¢) = (a r"+br ('””)P"'"(cos())-(a cosme+ fIsinmg)

o, a, b, a and |

a
ify notation the surface harmonics

m

Mmooy
C =0, \COSU)- (USIN(I)

mon n

sinmg

are introduced. Assuming (5) to be a linear form, the
potential in the origin is finite. The constants a, () and
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(7

is a solution of (4). Here, the magnetic scalar potential w15

completely described by the constants p,,  and ¢, . It was
the aim to calculate the magnetic flux density 1 a point using

the values of known scalar potential in its vicimty.
Consequently a spherical volume with known boundary

potentials on its surface around this field point is chosen to
determine the field quantity. The known boundary potentials
are resulting from a beforchand executed FEM compulation
and detcrmme all constants in (7).

e of the snheri
e 0l 1€ spher

To calculate the magnetic

m()und this field pomt wnh radins r-R. Ihc hnundmy
potential values are available only as single values on the
surface of the sphere. To distribute them equally on this

surface the sphere co-nrdinates ¢ are divided into J and 7

into K equal angles A¢ and AQ respectively.

2= i/\qﬁ
rKVI

=Y A0
LR

To satisfy (7) accurately the number of ./ and A must be
large. On the other hand, large numbers will increase the
computational expenses rapidly.  With
computation time and accuracy a good compromise has to be
found. Practical values for J and K are given in a following

respect  to the

section,
Assuming that ¢ and (are the co-ordinates in the local

system with the interesting field pomt i the centre of the



sphere the coefficients p,,, and g,,, can be determined by a
Legendre decomposition using the boundary potential values.

F S (2n+1)(" m' 353
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Prrtmo = 7K IR (n+m)! ;[’ZI( “¢/)
(cosé’ ) sind,
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magnetic flux density in the original glohal
system is
B=,; H=_; oradu (102}
B= e H=—p gradu (10a)
or
(n v A A PR
(B..8,.8,)= ;loké) - ‘—ﬁy"—.—ﬂz' (10b)

ordmate system
holds that

Al A l
—py =1, — 1
/0(3('“- /0['1‘“_ (1)
1(0,0,0% 0,0,0)
Analogous to (11) the derivatives, in 3y’ choosing

6=¢=rn/2and in 2’ respectively 8=0and g=7/2, can
be evaluated using (7). With respect to (11), applying (10b)
to (7) by using (9) and with the Legendre terms

P"(cos0) = cosd

(12)
P'(cos0) =sin0

the components of the flux density in the centre of a sphere
are explicitly rewritten by

X J
I ;}"1%7# ; ;f(o,,qs,)cosqs,].sm?o,
3 T K j,‘
B.o=—u, 57*,27}? ; - f(0k7¢/‘)5in¢/'] ‘sin’ 0, (13)
3 T [ K J
B, =-u, Sy ; ;_f(&k,%) -cosf, -sinf,

Sy .

Fig. 2. Arrangement of multiple overlapping spheres to obtain the local

field valueg on an nr‘uhat\l contour across the center n(\mlc of the <nhPrP<

inside a three dimensional FEM domain.
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Fig. 3. Flux density distribution B, on the front surface of I (Fig. 4) a)
computed by the classical direct evaluation of the potential and b) using the
new proposed post process method.

Using this local field approach (13) by arranging multiple
overlapping spheres on an arbitrary surface (Fig. 2), it 1s
possible to obtain the required local field quantities on this
contour with the same accuracy when compared to the
beforchand FEM computed potential values. The tetrahedron
shown in Fig. 2 indicates the three-dimensional mesh of the
FEM domain.

From Fig. 3 the difference between the direct evaluation of
the potential and the new post process operator is shown.
Here B, is computed for a test example (Fig. 4) on the front
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that linear shape functions ap
are resulting in a piecewise constant flux density distribution
{(Fig. 3a). Computed forces using this type of solution are not
reliable. The local values of B, piotted in Fig. 3b show the
continuous distribution com ‘

the new

-
i)

To demonstrate the suitability and accuracy of the
proposed method to compute local field values and forces an

-

symmetrical to its force axis so a zero force
theoretically correct solution. The configuration consists of a
cubic permanent magnet in the central position between two
ferro magnetic blocks. Fig. 4 shows the test arrangement
including the integration surface I' to compute the overall
force pulling the permanent magnet cube towards the iron
blocks. The magnet is magnetised in the z-direction. The
choice of the sphere parameters, the number of boundary
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big 5 Computed force pulling the permanent magnet 1in 7-direction versus
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Fig. 6. Overall force pulling the permanent magnet versus density /2

potential values at the surface of the arbitrary sphere J and K,
are obtained by the test calculations as well. Forces are
computed using the Maxwell stress tensor.

In Fig. 5 the force /7, pulling the permanent magnet to one
of the iron blo 1y

1o [P
i

. o A Tho foree i citad o b
KS 15 piotted. 1ne 1o1ce i ted t

C S : i
front surface of the I" only (Fig. 5), so the resulting force in
this case is not zero. Applying different numbers of J K
shows that F, converges in a stable way towards its accurate
value.
Beside the qu : s .
the second one now arises: how many spheres, i.c. arbitrary
field points inside [, are necessary to get the complete
information out of the potential solution to represent a
precise overali field distribution for the accurate computaiion

of forces. For this pt

rpose a

density 1D is defined. Fach side
of the cubic surface I is now subdivided m an array of
D times D equidistant points. For the new approach the
sphere diameters are set to 0.02m. Using the field values in
those points, the Maxwell stress tensor is appiied to obtam
the overall zero force of the test example. Fig. 6 indicates that
a density of D=20 is sufficient to represent the total force
accurately. When compared to the force pulling on each side
of the magnet cube (Fig. S), the remaining inaccuracy of 1V
is of less than 0.7 %. Using the classical direct evaluation of
the potentials to compute the forces a much higher density is
necessary to obtain the same information. In addition, usmg
the new proposed post process operator, the force converpes
towards a stable value (Fig. 6). Due to the piccewise constant
flux density distribution, the values of the total force
computed by the classical approach are oscillating and do not
converge towards a stable and reliable solution (Fig. 6}
Studies regarding the computational efforts required to ohtain
the full field information out of the potential solution show
that with D’

elacsical

<D. -J-K the computation time of the
classical method is slightly less when compared to the new
approach. Nevertheless, the advantage of the new post
process operator to supply the user with a stable and rebable
solution makes this method preferable to the classical one.
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Flux density plot of a three-dimensional solution for the test

In Fig. 7 the quadratic convergence of the FEM potential
solution and the of convergence of the force
computations using both, the classical and the new post
processing  approach is plotted versus the number of
tetrahedron elements used.

rate

The triangles are indicating the
theoretically gradient of convergence (1). The refinement of
the three-dimensional discretization is performed in such a
way that the elements are of the same shape in every FEM
model to obtain a regularly distributed mesh for all cases. To
compute the total force the Maxwell stress tensor is used
integrating the partial forces calculated in points equidistantly
distributed by the density D on all six sides of TI'. For the
classical approach a density D=40 is chosen and in the case
of the new method /7 1s set to 7. The sphere parameters are

345 -

J=K=15. The integration surface for the force computations
is located in the way that no plane of 1" cuts through the
nodes of the FEM mesh. If nodes are meeting the points for
the force computation using the classical post processing
approach this would result in a larger error due to the
troublesome definition of normal and tangential field
lement. The gradient-tria
are indicating the theoretical rate of convergence for
the quadratic and the linear convergence case. It can be seen
and as theoretically expected that the relative error in an
energy norm of the FEM potential solution converges
quadratically by number of first
tetrahedron elcments. Due to the analytically described
potential function inside the local field volumes the resulting
overall force using this approach are of the same order of
CONVErgence. the derived field
quantities occurs. Lookmg at the convergence of the total
forces computed by using the classical approach indicates a
linear behaviour only. The accuracy of the obtained values
are mIluenced by calculating the required derivatives

ywe that the rest 1ltg n'\ ained hy the
DWS tnatl Ing resuiis oplamed by Ine

order

increasing  the

classical mcthod are mhcrently inaccurate when compared to
the accurateness of the potential solution
Fig. 8 shows a three-dimensional flux density plot The
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length shows the local strength of the flux density. The flux
lines are representing the direction of the acting forces as
well and show thus the force distribution pulling at the

surface of the permanent magnet cube. The geometrical

dimensions and their relation to each other, the

and course of the lines are an indication for the recommended
three-dimensional computation of this example.

1‘|cfr|hnhnn

IV, IMPIEMENTATION

The use of the new proposed method to enhance the
accuracy of computed field quantities starting from an
existing potential solution demands an additional step during
the post processing of the FEM analysis (Fig. 9). Having
obtamed a FEM potential solution the user only has to define
the surface of integration I" on which the ficld quantities or
forces have to be calculated. The definition is performed by
defining single planes in the air gap of the three-dimensional
FEM model. Defining an arbitrary contour allows to compute
field quantities or forces along 1t.

For each plane or contour the density 1), the sphere
parameter J, K and the radius R have to be set. The sphere
parameter are problem depending and related to the geometry
of the device under consideration, 1.e. the air gap width. The
planes or contours should be located in the middle of the air
gap. A suitable value for the diameter of the single spheres is
about 90-95 % of the air gap width to have as many
tetrahedron finite elements inside the sphere as possible.
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force computation:
= Maxwell stress tensor
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« other methods
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derived field quantities.

Additional step during post processing to enhance the accuracy of

J-K=4 J=K=10

Frg. 10. Spheres with different numbers for the parameter J, K.

Including only one fimte element in the sphere results in no
enhancements in accuracy of the derived quantity.

The density D should be chosen in such a way that the
spheres are overlapping (Fig. 2). For the distance between
two points on the surface of integration it is suitable to
choose the radius of the sphere as the value.

To define the number and position of boundary potential
values  distributed on  the surface of cach
parameters ./ and K have to be chosen.

sphere  the
To ensure uniformly
distributed boundary values J is set equal to K. In accordance
with the computations plotted i Fig. 6 and other test
calculations a number J-K-[10 ..20] is sufficient to meet the
ratio between computational costs and accuracy. Fig. 10

Mustrates by different /K the position and number of

boundary potentials to approximate the local field inside a
sphere.
V. CONCEHUSIONS

[he Tocal solution of the Faplace equation (2) inside the air
gap of an electromagnetic device using a Fourier series

approximation as potential function results m a significant
increase of accuracy of the derived field quantities.

Inherent inaccurate solutions obtained by numecrically
derivated field values are caused by the loss of one order of
rate  of convergence when the
compared to the potential solution.
two- and thrccfdimemi(mal ﬁcld pmblcmq A mlulinn nf the

derived  quantitics  are

This problem occurs n

1 P

nn ~n ot
lll(d lllC l()Ldl pust

a technique to enhance the accuracy nf the results 1e.

process t describes

field
values and forces, derived fiom a potential solution in three-
dimensions. Here, a finite element solution app]ving standard

1.t
h”l\rl”t_, a lULdI lllllll\l(l

e
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lincar tetrahedron elements is used.

problem inside a sphere analytically enhances the accuracy of

the derived ficld quantities of a three-dimensional finite
element model. A Fourier series is used to represent the
potential function of the local held problem. Necessary
paramclers are i
With this approach it 1s chown l}nl the rate of convergence
for the field solution is the same as that of the FEM potential

itself. A three-dimensional FEM  test
including permanent magnet material  demonst
ir of the praposed method.

2reoare given,
Ie i

solution cxample

ntoan tha
1 1wy e
Results for local field

point out its suitability. The

hehavic

values and computed forces
comparison of computed forces using the classical post
zm(i the new post process operator show

processing approach

the adva
thic aagvantage
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