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Abstract - The paper describes the simulation of invertor-motor interaction emphasising
the generated torque and current ripple due to non-sinusoidal supply voltage (invertor)
and harmonics due to slotting and saturation (motor). In the classical analysis of
induction motor, the influence of siotting and saturation is anaiysed by describing the
airgap ficld as a combination of different harmonic components. In this paper, slotting
and saturation are described by introducing harmonic components of the self and mutual
inductances of the different phases of the motor. It is shown that the assumptions made
to obtain the standard two phase model using the Park transformation are not valid
when siotting and saturation are considered. Therefore, an extended motor model (13
phases), calenlated using 2D finite elements is used instead of the conventional two phase
model.
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INTRODUCTION

To analyse the behaviour of squirrel cage induction
motors, several approaches are described in literature.
The simulation of squirrel cage induction motors
behaviour is mainly performed using two phase models
either in a stationary co-ordinaie system {o-p model) ot
in a rotating co-ordinate system (d-q model) [1].
Parasitic effects ( slotting, saturation, etc. ) causing
torque and current ripple, are not included in these
simulations.

The analysis of slotting and saturation is performed by
an analytical calculation of the airgap ficld. Several
approximations and a known current distribution are
assumed. The next logical step is to describe the
parasitic effects in the motor model in order to analyse
their influence on the motor behaviour. This is however
not possible using the two-phase models due to the
approximations made during the derivation of these
models. On the other hand, the description of the
airgap field as a combination of different harmonic
components does not provide a model that can be used
in simulations.

In general, current and torque ripple are caused by:

1) Non sinusoidal supply voltage.

2) The distributed nature of the windings.

3) Non uniform airgap (slotting, saturation,
eccentricity).

Both 2) and 3) are internal sources of current and
torque ripple and have to be included in the motor
model. First, a short overview of the basic principles of

the simulation using two phase models and the analysis
of the airgap field and their limitations is given.

Induction motor simulation using two phase models

models are obtained by performing the Park
transformation on the set of differential equations
describing the stator and rotor phases. This results in a
set of two stator- and two rotor equations. The
transformation can only be applied when all rotor and
all stator phases are identical. For this to be true, the

following is assumed:

1) Stator and rotor surface are smooth.

2) The permeability of the iron core is constant.

3) The current distribution is considered sinusoidal
along the airgap contour.

These assumptions immediately eliminate several
causes of torque and current ripple. As shown below,
due to the distributed nature of the windings, the
slotting and saturation, the assumption that the
different phases are identical is only true in a global,
averaged sense. Instantancously, the different phascs
are not identical.

Analysis of the airgap field

The analysis of torque and current ripple as described
in the literature is based on the determination of the



airgap field. The airgap field is described as a
combination of harmonic components [2]. The
analytical expression of the airgap field is derived for a
known current distribution. In practice however, the
voltage applied to the windings is known, while the
current (and it’s harmonic content) arc the unknowi.
Furthermore, several assumptions and simplifications
are used to obtain the analytic expression of the airgap
field. Distinction is made between harmonics due to the
distributed nature of the winding and harmonics due to

non-uniformity’s of the airgap.

The harmonic content of the airgap field due to the
distributed nature of the winding is obtained as follows:

1) The stator and rotor are assumed to be smooth. The
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Figure 1: Winding layout, current dislribuliox.l and
approximated airgap field generated by a current 1n one
of the stator phases.

The current distribution and the airgap ﬁelc_l derived
from this current are shown. Only a current 1n one of
the stator phases is assumed. The obtained field is l}ot
sinusoidal but contains an infinite number of harmonics

of order v:

v=1+2g g=01112,... @

Only odd harmonic components arc present in the
spectrum of the airgap field. When a lhree.phase,
symmetric current system is assumed, all multiples qf
three also disappear from the spectrum. Each harmonic

induces an infinite set of harmonics in the rotor. The
interaction between the different harmonic ficld
components gives rise to parasitic effects such as
asynchronous torques, synchronous torques and ripple
torques.

The effects of slotting, saturation or eccentricities are
included in the analysis in a similar way. The airgap
width 8 at an angle 8 along the stator is described as a
function of timc t and rotor position U;
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Here &, is the minimal airgap length, N, and N, are the
number of stator and rotor slots. 0 is the angle between
the stator and rotor reference frame. 8, and 9, describe
the vartation of the airgap widih and are a funciion of
the actual slot shapes. Using this expression for the
airgap width (3), the airgap field can be expressed
analytically using (1). From this expression, amplitudes
and frequencies of torque and current harmonics are
obtained.

This analysis however has seve wbacks. Dt
the assumptions made, the harmonic content of the
derived airgap field is only valid in a gualitative way.
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Furthermore, the airgap field analysis is completely
separated from the simulations using the two-phase
models: The airgap field analysis gives an
approximation of the parasitic effects encountered in
the induction motor, but the influence on the dynamic
behaviour of the motor cannot be examined. The two
phase models described above, allow the simulation of
the dynamic behaviour, but ali parasitic effects had to
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the motor behaviour a motor model is required
including these parasitic effects.

Extended motor model

Instead of trying to include the parasitic effects into the
two phase models, the starting point to obtain the
required model is the general notion that an induction
motor, or any other electromagnetic device, can be
thought of as a set of coupled windings described by a
set of voltage differential equations:

[o]=[RE]+ 5 [v] "
[v]=[L1]

where [R] is the resistance matrix, [i] the current
vector, [u] the applied voltage vector, [y] the vector
describing the flux linkages and {L] the induclance
matrix. The inductance matrix [L] dcscribes the sclf-
and mutual inductances between all phascs (or
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windings) considered. From this point on, the analysis
is restricted to induction motors having an integer
number of slots per pole and per phase for the stator
and an integer number of slots per pole for the rotor. If
eccentricity is not considered, it 1s sufficient, for the
given circumstances, to treat only one pole of the
motor. As 4 rotor phase, either a single rotor bar or the
loop formed by two adjacent rotor bars and two ring
segments can be considered. As the motors used in the
calculations and simulations have four poles, 48 stator
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INDUCTANCE MATRIX

In order to be able to simulate the motor behaviour, the
inductance matrix [L] has to be calculated. Since some
of the parasitic effects are related with the relative

ween rotor and stator, this calculation has to

be performed for different rotor positions. The
inductance matrix can be calculated analytically using
the expression of the airgap field or using a finite

element approach.

Analytical calculation of the inductance matrix

The calculation of the inductance matrix is
straightforward when the airgap field is described as
above. The calculation is done in two steps:

1) Calculate the airgap field fo rent in one of

the phases.
2) Calculate the flux linked with each of the other
phases by integration of the airgap flux density over the

area of the different phases.

Because a unit current is assumed, this procedure
results in one row or column of the inductance matrix.
It has to be repeated for each of the phases and for
different rotor positions.

The analytical approach still has the same drawbacks as
the analytical calculation of the airgap field. Several
approximations are made to obtain this field, so this
approach does not provide us quantitative data.
Nevertheless, some interesting conclusions can be
drawn from this approach. Referring to the way the
distributed nature of the winding (see figure 1) is
described, the following conclusions can be drawn:

1) The self inductances of the different phases are
constant, independent of the rotor position 6.

2) The mutual inductance between two stator phases of
two rotor phases is also constant.

3) The mutual inductance between a rotor and a stator
phase is non-sinusoidal but contains the same
harmonics as the airgap field (2).

Both 1) and 2) are explained by the fact that, assuming
a sinusoidal varying current in onc ol thic phases, the
flux dcensity at cach point in the atrgap varics
sinusoidal. As for the mutual inductance between a
rotor and a stator phase, it is clear that the flux deusity
integrated over the area of one winding will only vary
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stator phases or two rotor phases must have it’s cause
due the non-uniform airgap, but is not due to the non-
uniform current distribution.

Finite element calculation of the inductance matrix

For the calculation of the inductance matrix [L], a two
dimensional finite element analysis is used. The finite
element model describes one pole of the motor. The
advantages of the finiie element approach are that ihe

actnal geometry is taken into
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saturation. The calculation is performed in two steps.
First, the instantaneous reluctivity in cach element of
the model for a given excitation and rotor position 1s

account as well as
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of time-harmonic and static solutions [3]. This
procedure is found to give similar results when
compared to other methods described in the literature
[4]. Using the extracted reluctivities, the inductance
matrix [L] is calculated:

For each of the 13 phases, a linear problem is defined
with a current of 1 A per phase. The problem is solved
using the extracted reluctivitics as an operating point
and the fluxes linking the 13 phases are determined.
Since a unit current of 1 A is used, these flux linkages
immediately represent the self and mutual inductances
of the motor. The inductances can be calculated as
described above, by integrating the flux density over the
area of the different phases. This leads to inaccuracies
since the flux density is obtained as B = curl(d).
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Therefore, the inductances are calculated directly from
the vector potential A [5]. This calculation is repeated
for different rotor positions, the excitation is varied
according to each new rotor position. Figure 2 shows
the calculated self inductances of the three stator phases
as a function of the rotor position. Clearly, the
assumption of identical phases, prerequisite to the
transformation to a two phase system does not hold and
is only true in an averaging sense. Analysing the
inductances using a discrete Fourier transformation, the



most important harmonics are shown to be the 2nd,
201h, 22th and 24th harmonics. The second harmonic
is explained as a consequence of saturation, the other
harmonics are due to slotting.
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Figure 2: Variation of the self inductance of the three
stator phases as a function of the rotor position.

Therefore, the self inductance of a stator phase L, can
be expressed as:
L, =1L, +L,cosZo
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L,, cos(22p0 + a5, ) + Ly, cos(24pb +0yy)

The harmonic component due to saturation is not
decribed as a function of the rotor position but as a
function of twice the pulsation since the flux revolves at
synchronous speed. Figure 3 shows the mutual
inductance between a stator and a rotor phase both in
time and frequency domain.
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Fi 1gurc 3: Variation of the miutua! inductance between a
rotor and a stator phase as a function of the rotor

position in time-domain (a) and frequency domain (b).

A similar procedure is used to express the otier
elements of the inductance matrix. Using this approach,

the effects of saturation and slotting are incorporated in
the motor model in a natural and realistic way.

Using the procedure described above, the inductance

matrix {L] is cxpressed as a continuous function of time

and rotor position. The set of equations (4) can be
solved using standard integration techniques (Runge-
Kutta, Newton-Raphson,...). Since there are (wo
unknown in (4), flux [y] and current [i}, the set of
differential equations to be solved cun be described
using either of these unknown (6,7).
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Considering the flux vector as unknown (7) has several
advantages.

1) Clearly from (6) and (7), the equation is simplified
when the fluxes are considered the unknowns because
the derivatives of the inductance matrix are not
required. In the d-g model, this is overcome by



considering the equations in a rotating reference frame.
By doing so, the sinusoidal variation of the mutual
inductance between stator and rotor is removed. Since
none of the inductances in the matrix [L] varies
sinusoidal, such transformation cannot result in a
constant matrix, so d[L}/dt will not disappear in the
extended model.

2) Considering the flux as unknown results in a morc
stable numerical integration. This s explained by the
following physical consideration. The flux linking a
winding is directly related with the stored magnetic
cnergy in the winding. Therefore, rapid changes in the

flux (changes that would result in a smail integration
step or loss of ac i
Current changes 0

wracy) arc physically not possible.
n the other hand can be very rapid.
The current through a winding changes inversely
proportional to the inductance change in order to
maintain the flux.
3y Considering uxes as unknowns provides the
possibility of a more accurate description of saturation.
As shown above, saturation introduces a second order
harmonic component. The amplitude of this harmonic
can immediately be taken from the discrete Fourrier
transformation and used to describe the saturation as in
(5). However, a more general description, valid for
different operating conditions, requires that the
inductance is expressed a
level in each winding. In order to do this, the logical
choice is to describe the inductance as a function of the
flux linking the winding and not as a function of the
current through it. This is illustrated by the fact that the
no-load current results in a higher level of saturation
than at full load, although the rated current is much

higher than the no-load current.
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The extended motor
the conventional two phase model. It can be used to
analyse both steady-state and dynamic behaviour. By
describing the inductances as a combination of
harmonic components, the model has a high flexibility.
The influence of each hamonic component can be
considered individualy by including or neglecting it in
the simulations. Two kinds of simulations are
performed: at constant speed, and during speed
variations, i.e. including the equation of motion. The
full set of equations to be solved when motion is
included becomes:

ALy '

dt
do
_— =
do _ T-Tjpq =~ B
dt J

flere. ] is the moment of incrtia, B is the torque due to
friction. Ty is the load torque and T is the motor
{orque. As mentioned in the introduction, an additional

cause of torque and current ripple, is the use of a non-
sinusoidal supply voltage. In order to examine the
influence on the motor behaviour, several voltage wave-
forms are used for the simulations. Figure 4 shows two
of the wave-forms [u] used.
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Figure 4: Wave forms in the simulations, (a) sinusoidal
modulated PWM, (b) optimised PWM eliminating
harmonics 5, 7, 11, and 13.

The dotted line in figure 4 represents the first harmonic
of the wave form. The analysis of torque and current
ripple is performed in both time and {requency domain.

RESULTS

Figure 5 shows the no-load current in the time domain
using the wave shapes of figure 4. As can be seen, the
optimised PWM wave form results in a more sinusoidal
current than the sinusoidal modulated voltage.
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Figure 5: No-load current in time domain for sinusoidal
modulated PWM (a) and optimised PWM (b).
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Figure 6: Frequency spectrum of rated current with
optimised PWM supply.

Figure 6 shows the current spectrum at rated load for
optimised PWM (figure 4.b). The harmonics in the
spectrum indicated with * are due to slotting. The
frequencies of the harmonics are 1050, 1162, 1271 and
1383 Hz. These frequencies are obtained by an
interaction of the supply frequency (56 Hz) and a 4o™
and 48" harmonic of the mechanical frequency (27.64
Hz).

CONCLUSIONS

Squirrel cage induction motor simulations are
performed using sinusoidal and non-sinusoidal voltage
supply. An extended motor model is calculated using
two dimensional finite element methods. Parasitic
effects that are normally described by a combination of
airgap ficld harmonics are now included in the motor
model. The effects of saturation and slotting arc
translated into harmonics in the self and mutual
inductances on the different phases. The model
originates from the same set of voltage differential
cquations as the a3 model or d-q model. Therefore,
similar integration procedures as for the two phase
model are applied. The analysis is focussed on squirrel
cage induction motors, but the described method is
generaily applicable to electromagnetic devices that can
be described as a set of coupled windings. The

influence of slotting, saturation and the applied wave
form are analysed both in time and frequency domain.
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