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Abstract

A dual approach is used to compute the harmonic electric and magnetic fields for the problem of a 3D
loaded microwave cavity (ACES TEAM Workshop Problem 19). The structure is modelled with edge
finite elements, which are well adapted to the approximation of the fields of interest. The local error
estimation, based on magnetic and electric constitutive laws, is builr up in order to guide the mesh

optimisation. The lafrer is performed using «a h- recnmqu(’ A special artention is ])(ll(l to the specific
difficulties due to the microwave resonance of the cavity.

INTRODUCTION

‘The duality of the microwave clectric and magnetic ficld formulations is vvly attractive o perform

mesh optimisation. The mesh optimisation is based on the a posteriori estimation of an error ficld that is

and clectric constitutive laws. This error field

¢
constitutes the starting point of the mesh refinement process, it helps ter distribute the characteristic mesh
od is a

length for the adapted mesh (h-technique). The method i ppllLd to the Jlmlyxls of a three-dimensional

resonant loaded cavity supplied with a TE mode coming from a rectangutar waveguide (ACES TEAM

Workshop Problem 19). The sharp edges of the iris and the dielectric rod in the middle of the cavity are
particular places whmc he mesh quality is crucial. The rod is made of a dissipative diclectric modelled

1
hy a comp ty.

a combination of the lack of fullilment of the magneti

ELECTROMAGNETIC FORMULATIONS

The problem of the electromagnetic field distribution inside a resonant metallic cavity

considered as an inner problem because no other exit way than the waveguide is possible. All the walls
are made of sufficiently conductive metals in such a way that they act as quasi perfect reflectors. The

problem of microwave distribution by the finite clement method, using respectively the electric and the
magnetic ficld formulation is expressed as
L joee.e + -”1 (i) " eurlecurle = fn xh'e . inD, 8}
) y Sne
j jop hh +J (joe) ' curlh curlh’ ——jnxe".h' . inD, (2)

Snn

* ‘This author is a Senior Research Assistant with the Belgian National Fund for Scientific Rescarch,
‘This text presents research results of the Belgian programme on Interuniversity Poles of Attraction initisted by the

Belgian State, Prime Minister’s Office, Science Policy Programming. The scientific responsibility is assumed by its
authors.
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where e and h are the electric and magnetic field vectors of phasors, €' and h' are test functions, { is
the magnetic permeability and € the complex permittivity (€ = €' - j €"), D is the studied domain, Sy, and
Sqp are the Neumann boundaries of the associated formulation, o the angular frequency, nxh* and nxe?
the tangential compenents of the a priori known magnetic and electric field on the Neumann boundaries.
These formulations result from the minimisation of a functional also based on the lack of fulfilment of
both magnetic and dielectric constitutive laws {1,4].

The meaning of the complex permittivity used in the harmonic formalism is the following: its real part
represents the actual permittivity of the material, while its imaginary part simulates dlwpauon effect in

dynamic polarisation phenomenon. In fact, it is linked to the loss factor (tan 8) b

namic polarisation pheng
€' =g tan(d) . 3)

APPROXIMATION SPACE

e and h are vector fields whose tangential component must satisfy some continuity conditions. That is
the reason why edge finite element spaces are the most appmpriulc approximation spaces to interpolate
them {1, 3, 5]. Moreover, edge clements avoid the presence of spurious modes which can appear when
other kinds of finite elements are used.

ERROR ESTIMATION AND MESH REFINEMENT

The discretization error in the dual approach is based on the lack of fulfilment of the constitutive
relations {4,7]. The absolute crror over an element E is defined by

=1 -1
1 2 1 2
o} = [=1d — ee['dE + [ ~[b - uh['dE 4
A T u
[ E
and the relative error over this clement is defined by
al
2 _VE S
Eg = d—, . (5)
with
2 f 1 2 r l 2
4" = [ —=|d+eel dQ+ | —Ib+ph| dQ (6)
o3 2 Hu

The global relative error € over the domain € is defined as a function of the elementary errors, ie.
2 2
=Yl . ™

This error is always positive and is equal to zero only when both constitutive ruldliom .llL t,dell‘,'
satisfied in the whole domain. The goal of mesh adaptauon is to obtain a pruulhul error € =¢" far an
mber of 7¢ the pr(‘nuuu Let M be a

q"rumi‘%‘d mcsh }v‘n while u\u‘lg a minimum number of L'L‘ icnts to disc
relatively coarse initial mesh. If h, is the size of the clement E in M and h,” is the size of the clements of
M" on the area defined by E, the classical convergence rate theory of finite clement schemes leads to

.2
=0 ")’"—0( D ®)

E E

where p is a constant depending on the polynomial order of the interpolating functions (p=1 for first
order edge elements). The condition £ =¢" then becomes

Yelr =", 9
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9

where the unknowns are the reduction factors r.. It is the case of the h-refinement method. The number
of clements N* of the optimised mesh can be approximated by

N=YL (10)

E le

for three-dimensional discretization. The optimisation process consists therefore in minimising N* while
keeping £” =¢”. This can be achicved by using Lagrangian multiplicrs and a golden section algorithm.

PRACTICAL PROBLEM

The under consideration cavity (ACES TEAM Workshop Problem 19 [6, &]) consists in a cylindrical
metallic hox (diameter 9 cm) loaded with a dissipative centred rod (diameter 9 mm) and coupled,
through an inductive rectangular iris, with a rectangular waveguide carrying a TEjp mode. The rod is

made of a diclectric material of complex relative permittivity €' - j&" equal to 4 - 1 j. The supply

2 AT T

frequency is ie. 2.412 GHz.

ITCQUeh

=

il
=
£
&

Acty <"y he walls are mu onductors. whi

Actually, the w ar : nonpericet conductors, which should necessitate the use of an
impedance boundary condition {2]. However, a very good approximation is to consider perfect
reflectors, where the electric tangential field is equal to zero. The use of homogeneous Dirichlet or

~ {itivme o
Neumann conditions «

Sh e g

i symimctry plancs, depending on the geometry and the kind of microwave
excitation mode, is very useful. This allows to reduce the size of the system by a factor four in the case
of the studied problem.

of electromagnetic waves is introduced by the imposition of the TE |, tangential electric
he entrance of the rectangular waveguide, where all evanescent modes due to the iris
proximity are supposed to be negligible. Nevertheless, the imposition of the e profile is satisticd weakly

ed weakly
in the case of the magnetic ficld formulation. Since arcas concerned with 7ero tangential clectric ficld are
more extended (certain kinds of symmetry conditions and perfect conductors), the e problem includes
less degrees of freedom and less weakly satisfied boundary conditions. That is why the e fi i

leads to a better conditioned system of equations and to more accurate results for a given mesh.

nt 4
dai L

symmetry condition . .
I I iris diclectric rod

waveguide ' \ é 7
o | VAN A AN AN AN SN A o i A AS g
entrance \ m VA

B ’ . l T DN
S
rectangular \ | /74\‘4L \
waveguide M | V4 \
metallic cylindrical cavity

walls
Fig. 1. A quarter of the studied structure with the initial mesh and the boundary conditions.

The problem of cavity resonance is relatively complex from the error estimation point of view. Indeed,
the same mesh used with two different formulations leads 10 two different estimations of the resonance
frequency. Consequently, the same mesh excited at a given frequency can give electromagnetic fields
that are very different one from another ‘inside the cavity, while they are quite similar inside the
waveguide. For example, opposite signs of electric 7 component can he found when the supplicd
frequency is between the estimations of the resonance frequency given by the different formulations.
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The more the quality factor is important, the greater the sensibility of the results will depend on the
choice of a formulation.

As a consequence, the estimated field of electric error is expected to be more important inside the
cavity, resulting to a sharper mesh refinement in this area. The diclectric rod will also present a greater
electric error because of its greater permittivity (reduced wave length). As a consequence, the curvature
of the radial clectric field distribution is greater in the dielectric medium than in the air, which needs
more clements, given the fixed edge clement degree of shape functions. Because there is an important
current along the vertical edge of the iris, a quasi singularity of the magnetic ficld happens at that point
and consequently a greater error on the computed field.

Maps of elementary relative error given by the initial mesh are shown in Fig. 2.
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As expected, the greatest error is located along the inis edg pposi
symmetry plane. After two adaptive iterations, an adapted mesh (Fig. 3) is obtained by cutting the edges
in order to respect the ficld of characteristic length. As it can be seen in Fig. 4, 5, 6 and 7, this last mesh

25 the rity between the results given by the dual fo ns. Thege §i

e, mostly near the side opposite to the

o

of e, orhy
taken para

obtained with both formulations and respectively with the initial and adapted mesh. The cut is

N
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AR AL AN KRN
R NS AT OOISEERGR0
AR AR,

Fig. 3. Adapted mesh.
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Fig. 6. Magnetic ficld distribution for the initial mesh Fig. 7. Magnetic tield distribution for the adapted mesh,
The figures relative to the initial mesh clearly show the phase error in the wi aveguide and the
magnitude error in the cavity. These errors are significantly reduced when the mesh is ad: ipted. _
Finally, Fig. 8 and 9 show the magnetic ficld distribution at phases 02 and 90°, _
to the I
cdges e
t mesh
cut is

Fig. 8. Real part of the magnetic fick] in the structure
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field in the structure

CONCLUSIONS

The problem of a three-dimensional loaded resonant cavity is solved by using dual formulations and
edge finite elements. An error estimator based on the lack of fulfilment of the constitutive ldduonq is

built up in order to mct.md an adapted mesh with an a posteriord prescribed
error and with a minimiscd number of LlC nts. This procedure leads to a good convergence of the
results given by both formulations. Better cs mtion of resonance {requency and clectromagnetic fields
in microwave devices can be performed th;i".k% to the presented method.
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