171

ENHANCED ACCURACY OF 2D FINITE ELEMENT FIELD QUANTITIES BY A LOCAL POST-PROCESS

K Hameyer, U Paliner and R Belmans

Katholicke Universiteit Leuven, Belgium

ABSTI

Fnergy  conversion in  electromagnetic energy
transducers takes place in the air gap only. Numerical
ficld computation techniques of gcneml application
range are used for the 1{r\clg1 a i N
electromagnetic devices. To predu.t the operations
hehnviour of such devices partlcular attention haq to be
wsities and the magnetic field strength. Ungomg
publications  and  research  activities on force
computations in electromagnetic devices using different
approaches indicate the imporlancc of this field. This
paper is focused on the prac ctical applicati()n of the static
electromagnetic he LAPLACE equation
i a local post-process to increase the accuracy of an
existing  solution  obtained by the standard two-
dimensional  finite elcmcnt method usino trianvular

discussed.

INTRODUCTION

Using a tw iement apprc

...... a twe oach, the
vector potential A s computed and the interesting
magnetic field quantities are derived from this solution.
The numerical evaluation of derivatives can be
troublesome due to round off errors during the
caleulation. The flux density B is determined by the

partial derivatives of A.
B = curlA )

Therefore, the resulting flux density looses one order in
accuracy when compared to the order of accuracy of the
vector potential. Using standard linear shape functions
to approximate the continuous vector potential over a
triangular finite element results in an only piece wise
constant magnetic flux density. As a consequence, the
caleulated forces from those derived quantities are less
accurate when compared to the vector potential resuls.
This causes numerical errors due to numerical
mtegration by using the MAXWELL stress tensor to
evaluate globally generated forces.

For a more accurate force calculation the aim is to
improve the results of an existing field solution in a
local post-process. The idea is to solve the LAPLACE
equation

Viu=0 (2)

J

in source free and homogenous areas, e.g. in the air gﬁ,
of an electromagnetic device starting with an existin

ficld solution. As a method, the local potential is
approximated by a FOURIFR series using the existing

solution as boundary values of the local problet
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formulation.
FORCE COMPUTATION
Different methoc ds to compute forces are in "4):“.:7‘.0“. use

(2, 3). The MAXWELL stress tensor and the principles of
the virtual work are the most frequently used.

To compute the forces according to the MAXWELL
stress tensor, the local values of the normal component
of the flux density 8, and the tangential component of
the magnetic field strength H, are necessary and
therefore, the derivatives of the vector potential have to
be evaluated. The total force is obtained by a sum of
iocal forces along an arbitrary closed surface I'.
Applying t as the tangential unit vector respectively n as
the normal unit vector and 1, the permeability of free
space, in two dimensions the MAXWFL 1. stress tensor is

given by

L
F\/:J (B"H’)t+£(';-8n—u“H/ medl (3)
1 0

To obtain reliable force predictions calculated by eq. (3)
the need for the highly accurate computed
electromagnetic field quantities is obvious.

Virtual Work Principle

For the principle of the virtual displacement two field
evaluations are required to compute the forces via the
change of co-energy stored in the finite element model.
The displacement is performed assuming constant flux
linkage V. To hold this condition only small
displacements in the direction p are a lowed. Using this
approximation the total force is expressed by
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1= const

In this paper the MAXWELL stress tensor is used as only
one field solution is necessary.

LOCAL SOLUTION OF THE LAPLACE
EQUATION

The LAPLACE eq. (2) wrilten in polar coordinates (r,d)
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The idea now is to find a function which represents
formally an infinite series in which every term is a
solution of the differential cquation and the boundary
values are satisfied. Assuming linearity and uniformity
of the LAPLACFK equation and thus applving to eq. (5) a
FOURIER approach, given in Meis et al (4), leads to the

harmonic fuiiction:

Uy - " .
u(r,d) = 5 + D ra, cos(n®) + B, sm(ntb)} (6)

n=i

with its coefficients a, and f3, .
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The procedure to solve eq. (6) describes the solution of
a DIRICHLET problem on a circle with given boundary
values on its circumference. Equation (7) represents a
FOURIER series and the coefficients o, and 3, can be
calculated by using the known potentials = u( R,®) on
the circumference of a circle with radius R .

Now a finite number of N equiangularly ordered points
is applied onto the circumference of the circle.

u,-(R,(b,-):u(R,r%g) Li=1(DN (8)

With N boundary potential values #, known on the
circumference and according to the properties  of

harmonic functions the first term in eq. (6) can be

wrilten as:
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With the Fourier series eq. (6) and their coefficients egs.
(9, 10) the potential in the centre of a circle can be
I by only knowing the boundary potential

computed
values on the circumference of the circle.

Using this approach inside a finite element solution, the
value of the potential of a field point is now depending
on the solution in several ‘inite elements. Thus, local
numerical errors in single elements will have a
relatively small influence on the solution in the
considered field point. Applying eq. (6) derivatives at

the centre of the circle can be calculated.

The idea now is to transform the described process, of

solving a DIRICHLET problem on a circular surface, to

point P, of a
1

illustrates

determine the vector potential in a
discretised finite element domain. Figure
this idea. R, is the radius of the considered circular
surface and the dots on the circumfcrence indicate the
ints of known vector potential values computed by
the existing finite element solution.

To obtain the potential on a given contour inside a finite
element domain, multiple circles have to be evaluated
Overlapping circles guarantce a continuous solution in
the considered region after this post-process.

The numerical shape of the eqs. (6, 9, 10) enables an
easy implementation of the procedure i a finite clement
program package. Advantageous is the shape of the

contour

Figure 1: Multiple circles determine the potentials
on a contonr
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¢q. (6). The derivatives in the centre of the circle are
represented by the FOURIFR coefficients. Thus. no
additional computational efforts  are necessary to
compute

ol 2 5
= e Z u cosP
v 1 N-R i1
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(’u' 2 Q“ o
=p, = u sin b,
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APPLICATION OF THE METHOD

Using the standard finite element method in two
dimensions, the field area is discretised into non-
overlapping triangular clements with homogeneous
material  properties. Applying simple linear shape
functions to the single elements to approximate the
veetor potential, a continuous potential distribution is
obtained. With eq. (1) the flux density distribution is
picce wise constant. Compared to the vector potential A,
the approximation of the flux density distribution is of
one order lower. To surmount this disadvantage, an
additional step in the post-process is applied. Figure 2
Hlustrates this additional step during the pos
Using the local solution of the LAPLACK equation on a
circle. applying the known potentials as boundary
vaiues, increases the accuracy of the already computed

i O I N
field values in this region.

The local solution of the LAPILACE equation inside an air
gap of an electromagnetic device using a FOURIER
series approximation for the vector potential results in a
significant increase of accuracy of the derived field
quantities. Investigations concerning the convergence
rate of the solution can be found in Kasper and

FEM
field solution

N
solving the Dirichlet-

x / problem on a circle

force computation:

* Maxwell stress tensor
« virtual displacement

* other methods

b i

Figure 2: Additional step during post-processing to

enhance the acecnrany wf aciniie. .10
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Franz (1). To compare the results obtained by the local
ficld evaluation to the conventional obtained field
quantities of first order elements fig. 3 shows the
computed vector potential A and the derived magnetic
flux density in direction x of the Cartesian coordinate
system with and without using the LAPLACE approach.
For the application of the local Dirichlet problem 24
potential boundary values on the circumference of the
circle are used.
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Figure 3: a) Computed vector potential inside the
circular FEM domain, b) the derived magnetic flux
density B, and c) the resulting flux density B, derived
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Figure 3a shows the local vector potential of the
existing FEM solution inside the circular domain. The
resulting magnetic flux density using eq. (1) is plotted
in fig. 3b. For the finite element discretisation linear
elements of first order were used. It is obvious that
computed forces using this type of solution are not

reliable. In fig. 3c the local values of the flux density
obtained by using the solution of the described

DIRICHLET problem are plotted. Using the analytical
derivatives of eq. (6), it can be seen that the order of this
solution is of me same as the order of the solution of the

RESULTS

the method introduced is applied to a magneto static
field problem. Computations are performed on a test
example consisting of a diametrical magnetised circular
permanent magnet and a ferromagnetic back iron yoke
(fig 4). With the very dense mesh piotted in fig 4a an
flux d in
eq. (1). Due to svmmetry the global force is zero. In
fig. 4b the computed flux density distribution is plotted.
Pue to the nngncmallon direction of the permanent
inusoidal normal component of the

accurate

a) permanent
magnet

back iron

air gap
b)

Figure 4: a) FEM mesh and b) flux plot of the test
example.
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flux density distribution inside the air gap is expected.
Using the local solution computations are performed on
a median circular contour in the air gap. The radius of
the single local circles is set to the value of half of the
air gap length. Thus, the local circles fill the whole air

gap region.

domain (fig. 4a) a good agreement between the results
obtained with the evaluation according egs. (1) and (6)
is found. The computed ficld quantities plotted in fig. Sa

and ihe tangentiai-component (fig. Sb)
ensity. The flux ; th
conventional method, direct ev 'alualmn of eq. (1),
scatter around the values obtained by the a\pplication of
the FOURIER approach as nlmtmtcd in fig. 5. Kasper and

are the normal
are in¢ normai-

of the flux de Pncn\/ obtained lf\

...... naincy v

\(1

Franz (I\ renort of a

eport of a ¢
significant digits in the results Whm comnared to the
usual FEM approximation. This is caused by a higher

rate of convergence.

Bin using both methads
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Figure 5: a) Normal- and b) tangential-component of

the flux density distribution in the air gap computed
using eq. (1) and the local post-process eq. (6).
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Figure 6: Comparison of the product B - B vs. an
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position, computed at the median contour in the ai
using both methods.

Computing the force by integrating the Maxwell stress

an  the

tensor along the median the

product of normal- and tangential-component of the
flux density is necessary. Applying both approaches, the

product B - B is calculated.

A comparison of the results obtained by both methods is
shown in fig. 6. The values obtained by the
conventional post-process show large deviations around
the values computed by the iocal post-process approach.
The
approximation consists of the discretisation error and
additional rounding errors (1). Using the dense mesh
from fig. 4a the discretisation error is relatively small.
In spite of the relatively good approximation of the
single B,, B, components of the magnetic flux density,

error of a

finite alemant
~ia i a i

total numerical finite ement

caused by the dense finite element mesh, the product of -

both quantities shows high inaccuracies. Thus, the
numerical error using the conventional post-process
approach is higher when compared to the error using the
local post-process routine. It can be found that by
integrating the values along the median contour in the
air gap the theoretical expected zero force is very good
approximated by using the local post-processing
technique.

To avoid numerical errors by applying the local post-
process approach, the radius of the circles must be as
large as possible to include as many finite elements as
possible. In several test calculations, performed with
different finite eclement meshes, it is found that the
diameter of the circles must be at least larger than the
mesh size. This ensures an increased accuracy of the
results when compared to the conventional post-
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processing. As a consequence, using a less dense finite
element mesh for the local post-process approach,
results in field quantities of the same accuracy as
obtained by the conventional post-process applied to a
very high discretised finite element domain.

CONCLUSIONS

The local post-process approach introduced describes a
technique to enhance the accuracy of the results of an
already existing finite element solution. Using this
approach reliabie force caicuiations are possible. The

known values of the vector potential

aro honndary
yCCWOr poiehivar are i

boundary
values for the local field problem. A FOURIER series is
used to approximate the vector potential in the local
finite element domain. The necessarily additional step
to implement in the

re. Compared to the conventional

e amms oo

the post-process is

durinig easy

finite element software. Co

post-processing an acceptable compromise between
computational costs and accuracy is found.
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