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Abstract. The CAD laboratory gives the students an idea when to use the different approaches 
to deal with magnetic circuits. They start with a simplified analytical model and are then 
confronted with the finite element method, even in three dimensions. Calculations and 
measurements are compared and discussed. 
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A CAD LAB AT THE DEPARTMENT OF 
ELECTRICAL ENGINEERING 
 
 
After two years of education in basic engineering 
sciences, students of the third year of their master's 
degree are confronted with technical courses. An 
educational complement for the course "General 
Electricity, Electrical Machines and Drives - part 1" is a 
CAD laboratory in electromagnetics. In this laboratory, 
the analysis of different electromagnetic objects used in 
power electronic converters and variable speed drives is 
given. Limitations of classical approaches and 
comparison with measurements are provided. In spite of 
its rather simple construction, a core of laminated iron 
and a coil of copper (fig. 1), an E-core inductor has a lot 
to offer as a subject of a CAD lab. After all, inductors 
are used in all kind of converters as commutating and 
smoothing inductors, as part of protective circuits and 
filters, or just as an impedance. It has to be realised that 
passive components (inductors and capacitors) represent 
1/3 of all the cost of power electronic converter (1). The 
aim of this CAD lab is that students compare the 
different methods and their restrictions, for calculating 
the inductance. A commercial finite element program on 
UNIX-workstations, a spreadsheet program on PCs and 
the standard measuring equipment of a electrical 
machine laboratory are available for this purpose. 
 
 
CONTENTS OF THE CAD LAB 
 
 
Magnetic circuit approach 
 
 
Air gap reluctances. A magnetic circuit (Hopkinson’s 
law, comparable to Ohm’s law for electric circuit) is a 
first approach to calculate the outer inductance. The 
magnetic circuit is described by a flux tube model. The 
flux tubes are represented by their reluctances. 

 
 

Figure 1: Three dimensional view of the E-core 
inductor 
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Figure 2: Cross section and dimensions of the E-core 
inductor 

 
 
TABLE 1 - Rated values and dimensions of the 

E-core inductor 

 L = 150 mH g = 3.3 mm 
 I = 10 A a = 6 cm 
 N = 288 b = 9 cm 
  c = 9 cm 

 



 

 

A first approximation is obtained by neglecting the 
magnetomotive force (MMF) in the iron and the leakage 
flux. The inductance L can be found by first calculating 
the total reluctance ℜm and evaluating 
 

L N
m

= ℜ
2

 , (1) 

 
where N is the number of turns of the coil.  
 
To take the fringing effect into consideration, correction 
factors for the cross-section of the air gap S1 beneath the 
centre leg of the E-core with length g, are used. 
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where a and b are the dimensions of the core 
cross-section. 
 
Two different air gap reluctances can be found in the 
inductor. ℜm1 is the reluctance of the air gap beneath the 
centre leg and ℜm2 is the reluctance of the air gap 
beneath the right or left leg. The total reluctance is given 
by 
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with 
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Table 1 and fig. 2 show the dimensions of the inductor 
used in the CAD laboratory. Table 2 shows the results of 
the analytical inductance calculation. 
 
 
Superposing of flux-MMF plots. The second approach 
includes the non-linearity of the iron parts by 
superposing the flux-MMF plot of the air gap with the 
flux-MMF plot of the iron parts. 
 
Table 3 shows the working scheme for this method. Two 
different magnetic flux tubes can be distinguished, the 
magnetic flux Φ1 in the centre leg of the E-core and the 
magnetic flux Φ2 in the right or the left leg. Therefore, 
the two different paths are handled separately. Starting 
from the magnetisation curve of the iron (step 1), shown 
in fig. 3, a flux-MMF plot (step 2) is constructed.  
 
TABLE 2 - Inductance by calculating the air gap 

reluctances  

 Correction factor caused by fringing effects: 1 g 
 

 ℜm1 = 4.447 105 H-1 
 ℜm2 = 8.452 105 H-1 
 L = 0.096 H 
 
 Correction factor caused by fringing effects: 2 g 
 

 ℜm1 = 4.082 105 H-1 
 ℜm2 = 7.428 105 H-1 
 L = 0.106 H 

 
 
TABLE 3 -  Working scheme for the superposing of 

flux-MMF plots 

 Step 1 H  ⇒ B  
 Step 2 MMF H= l  ⇒ Φ = B S  

 Step 3 MMF  ⇒ Φ =
ℜ

MMF

m
 

 Step 4 MMF  ⇒ Φ  

 Step 5 I MMF
N

=  ⇒ L
N

I
=

Φ
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Figure 3: Non-linear magnetisation curve of the iron 
parts 
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Figure 4: Total and partial flux-MMF plots 
The average length of a flux line for the two different 
paths is given by 
 



 

 

l1 = +a c  (6) 
l2 2= +a c  . (7) 
 
The flux-MMF plot for the air gap (step 3) is defined by 
the reluctance. Therefore, the fringing effects are 
included. The relation between the two different flux 
tubes defines how the students have to combine the flux-
MMF plots (step 4). 
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Fig. 4 shows the total flux-MMF plot. The dashed lines 
are the flux-MMF plots of the two air gaps. The lines 
near the Φ-axis are the flux-MMF plots of the iron 
paths. 
 
In the last step, the inductance as a function of the 
current is obtained (fig. 5). Table 4 gives the result for 
the inductance for the rated value of the current. 
 
 
Finite element method in two dimensions 
 
 
CARTER factor of a slot. As a second method for the 
field calculation, the students use the finite element 
method. To become familiar with the CAD software, the 
CARTER factor of a slot (fig. 6), is calculated and 
compared with the analytical result.  
 
The CARTER factor is defined as the ratio of two air gap 
lengths, the real length g of the air gap and the 
equivalent length δ of a smooth air gap (without slots) in 
which the same magnetic energy is stored. 
 

k
g
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The CARTER factor is defined in (10) 
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with 
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slot width: w a=
2

 (13) 

slot pitch: λ = 3
2
a  . (14) 
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Figure 5: Calculation of the inductance by 
superposing the flux-MMF plots 

 
 
TABLE 4 - Calculation of the inductance by 

superposing the flux-MMF plots 

 Correction factor caused by fringing effects: 1 g 
 

 L = 0.096 H (I = 10 A) 
 
 Correction factor caused by fringing effects: 2 g 
 

 L = 0.106 H (I = 10 A) 
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Figure 6: a) Flux density distribution (FEM) and  
 b) dimensions of the slot for CARTER factor 

determination 
 
 
TABLE 5 - Calculation of the Carter factor of a slot 

 Analytical result: 
 

 kc = 1.27 
 
 Finite element calculation: 
 

 kc = 1.28 
 

 with: 
 

 Φ = 0.09 Wb 
 W = 3.357 103 J 
 δ = 4.2 mm 

 



 

 

The equivalent length of the air gap is calculated by the 
finite element method as 
 

δ µ= 2 0
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Φ
 , (15) 

 
with 
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The magnetic flux Φ is forced by applying the correct 
values for the magnetic vectorpotential A at the left and 
the right side of half the air gap. S is the cross-section of 
the air gap in the finite element model according to fig. 
6. W is the magnetostatic energy stored in the finite 
element model and calculated with the post-processor of 
the FE-program as  
 

W B V= ∫ 1
2

2
µ
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Table 5 shows the result for the Carter factor. 
 
 
Inductance calculation. The calculation of the 
inductance is based on the identification of the magnetic 
energy W stored in the inductor expressed in magnetic 
quantities  
 

W H B V= 



∫∫ d d  , (18) 

 
and the same energy expressed in electric quantities 
 

W L I= 1
2

2  , (19) 

 
where I is the current. 
 
Figure 7 shows a flux plot of the finite element solution 
of the inductor, while table 6 shows the result of the 
finite element calculation of the inductance. For 
comparison, a two dimensional approximation 
(neglecting fringing effects in the third dimension) is 
done by calculating the air gap reluctances. 
 
 
Improvement of the magnetic circuit 
 
 
If the students have to compare the results of both 
approaches, they notice a difference due to the fact that 
the leakage flux is neglected and the fringing effect is 
underestimated in the magnetic circuit. 

 
 
Figure 7: Flux plot of the inductor 
 
 
TABLE 6 - Two dimensional finite element 

calculation of the inductance 

 Finite element solution: 
 

 W = 5.94 J 
 L = 0.119 H 
 
 Calculation of the air gap reluctances: 
 (correction factor caused by fringing effects: 2 g) 
 

 ℜm1  = 4.381 105 H-1 
 ℜm2  = 7.972 105 H-1 
 L = 0.099 H 
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Figure 8: Improved magnetic circuit of the inductor 
 
 
TABLE 7 - Calculation of the inductance with the 

improved magnetic circuit 

 kf = 1.61 
 ℜm1 = 4.133 105 H-1 
 ℜm2 = 7.897 105 H-1 
 ℜm3 = 8.842 106 H-1 
 ℜm = 6.833 105 H-1 
 L = 0.121 H 

 



 

 

The finite element method inherently considers these 
mentioned effects. To improve the first approach, the 
students can see the E-core as two slots of the stator of 
an induction machine with a smooth rotor. Based on the 
CARTER factor, slot reluctance and leakage reactance 
calculations of induction machines, the students can 
obtain a more accurate approximation of the equivalent 
cross-section of the air gap. 
 
A first possibility is to include the leakage flux by 
calculating the reluctance of the slot in which the current 
is flowing. This reluctance ℜm3 is given by 
 

ℜ =m
a

b c3
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3 2
µ

 . (20) 

 
The total reluctance (fig. 8) is given by 
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A second possibility is to base the correction due to 
fringing on the CARTER factor. The same air gap can be 
seen in two different ways, but with the same reluctance. 
 

( )
k g

b
g
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fµ λ µ λ0 0 2
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This correction factor kf is given by 
 

k f = −β α
2

 . (23) 

 
The cross-section S1 of the air gap beneath the centre leg 
of the E-core is given by (neglecting fringing in the third 
dimension) 
 

( )S a k g bf1 2= +  . (24) 

 
For the cross-section S2 of the air gap beneath the left or 
right leg, a combined correction is used. The correction 
based on the CARTER factor can only be used for the 
interior sides of the air gap. For the exterior sides, a 
correction of 0.5 g is used. 
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Table 7 shows the result for the inductance. 
 
 
 
 

 
 

Figure 9: Finite element model of the two separate 
layers of the coil 

 
 
TABLE 8 - Three dimensional finite element 

calculation of the inductance 

 ks = 0.95 
 W (quarter model) = 2.001 J 
 W = 8.002 J 
 L = 0.160 H 
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Figure 10: Electric circuit to measure the inductance 
 
 
TABLE 9 - Calculation of the inductance using 

measured data 

 Measurements: 
 

 U = 461 V 
 I = 10.04 A 
 P = 97 W 
 
 Calculation: 
 

 f = 50 Hz 
 X = 45.91 Ω 
 L = 0.146 H 

 
 



 

 

Finite element method in three dimensions 
 
 
The influence of the length of the device is taken into 
account by using the finite element method in three 
dimensions. In this third approach modelling of the coil 
in two separate layers as shown in fig. 9, becomes 
possible. Based on symmetries only one quarter of the 
inductor has to be modelled. To reduce the computing 
time, the iron is assumed to be linear. 
 
To give the students an idea how lamination can be 
modelled, they use an anisotropic material for the 
laminated iron core and calculate the equivalent relative 
permeability for the different directions: 
 
µ µr X Y s r ironk, ≈  (26) 

µr Z
sk

≈
−
1

1
 , (27) 

 
where ks is the stacking factor of the laminated core. 
 
Table 8 gives the result of the three dimensional finite 
element calculation of the inductance. 
 
 
Measurements 
 
 
The inductance is measured by applying a sinusoidal 
voltage U (fig. 10). The current I is set to the rated value 
and the dissipated power P is measured. Table 9 shows 
the calculation of the inductance out of the 
measurements. 
 
 
CONCLUSIONS 
 
 
All electric machines have rated values and therefore the 
rated value for the inductance of the E-core inductor is 
compared with the results of the calculations and with 
measurements. This comparison gives the students an 
idea when to use an magnetic circuit approach 
(Hopkinson’s law), or when they have to build a two or 
three dimensional finite element model. If the leakage 
flux can be neglected and they have knowledge of the 
fringing effect, they may use a simplified analytical 
approach. If the device can not be considered as 
infinitely long in the magnetic field calculations, they 
have to build a three dimensional finite element model. 
This understanding forms the basic of further CAD work 
with more difficult systems (permanent magnet motors, 
reluctance motors, induction motors, electromagnetic 
fields around power devices, etc.). 
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