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NTRODUCTION 
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ETOMECHANICAL SYSTEM 

d elasticity finite element methods 
misation of an energy function. The 
 linear electromechanical system 
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where K is the mechanical stiffness matrix and M is the 
magnetic ‘stiffness’ matrix. Considering the similar form of 
the energy terms, the following system of equations 
represents the numerically coupled magnetomechanical 
system: 
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where T is the magnetic source term vector and R represents 
external forces (not of electromagnetic origin). The partial 
derivatives of the total energy E with respect to the 
unknowns [A  a]T identify with the combined system (2): 
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where AT∂ and aR∂  represent energy input into the system. 
Using (2), (3) and (4), the coupling terms D and C are 
recognised as 
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The coupling term D is related to the elastic energy U by  
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and represents the increase in elastic energy U due to an 
increase in the magnetic field A, with deformation a held 
constant, e.g. caused by magnetostriction effects. The term 
D is used to represent MS in a strong coupling scheme [6], 
but will not be considered further, since here MS is dealt 
with by a weak coupling procedure. 
 The coupling term C (6) represents the dependency of 
magnetic parameters in M on the mechanical displacement 
a. Right-multiplying C by vector potential A immediately 
renders all magnetic forces Fmag (Lorentz forces as well as 
reluctance forces): 
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This approach is extended to the non-linear magnetic case 
in [3]. 

III. MAGNETOSTRICTION FORCES 

A.  Concept 
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 When the coupling term D is not used (D=0) and the 
magnetic forces Fmag = –CA are shifted to the right hand 
side of (2), the system becomes uncoupled: 
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Now MS effects are built into the analysis using a force 
distribution Fms that can be added to R and Fmag. By 
magnetostriction forces Fms we indicate the set of forces 
that induces the same strain in the material as the 
magnetostriction effect does. This approach is similar to the 
use of thermal stresses due to heating [7]. In calculating 
thermal stresses, the thermal expansion of the free body (no 
boundary conditions) is calculated based on the temperature 
distribution, and the thermal stresses are found by 
deforming the expanded body back into its original shape 
(or back inside the original boundary conditions). In 
calculating MS forces, the expansion of the free body (no 
boundary conditions) due to magnetostriction is calculated 
based on the magnetic flux distribution, and the MS forces 
are found as the forces needed to deform the expanded 
body back into its original shape (or back inside the original 
boundary conditions). 
 For FE models, this can be done on an element by 
element basis. The midpoint of the element is considered to 
be fixed. The MS deformation of the element, i.e. the 
displacement of the nodes with respect to the midpoint, is 
found using the element’s flux density Be and the λ (B) 
characteristic of the material. If a set of ),( σλ B  
characteristics are given, one has to be chosen for the 
appropriate value of tensile stress.  
 

B.  Strain for Isotropic Materials 
 Fig.1 shows a typical MS characteristic for isotropic 
3% SiFe (solid lines) as a function of tensile stress. For 
isotropic materials, the local xy-axis of the element are 
rotated so that the flux density vector B coincides with the 
local x-axis [8]. The strains xλ  and yλ  in the local frame 
are then given by 
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where )(Bλ=λ  is the MS strain in the direction of B (x-
direction) and tλ  is the MS strain in the transverse 
direction (y and z-directions). Usually, magnetostriction 
will leave the total volume and density unchanged [9], so 
that yλ  = zλ  = – xλ /2. This volume invariance is 
equivalent to a magnetostrictive 'Poisson modulus' of 0.5, 
which is bigger than the mechanical Poisson modulus of 
about 0.3. Therefore, when the MS deformation is 
represented by a set of mechanical forces in the direction of 
the vector B, there is always a set of forces perpendicular to 
B to correct this difference in Poisson modulus (Fig.2). In a 
2D plane strain analysis, the thickness (z-direction) of the 
material has to remain constant and an additional tensile z-
stress needs to be applied in order to obtain 0=λ z . This 
adjusts the values of λ  in (10) to 
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where ν  is the mechanical Poisson modulus of the material 
and 2/λ−=λ t . 

C.  Strain for Anisotropic Materials 
 Fig.1 shows a typical MS characteristic for anisotropic 
M330-50A steel (dashed lines). As an approximation of the 
anisotropic behavior, the flux density vector is decomposed 
into a Bx and a By component in the element’s local xy-axis, 
arranged so that the x-axis coincides with the rolling 
direction, and the y-axis with the perpendicular direction. 
The rolling direction curve )(RD Bλ  is then used with Bx as 
input, and the perpendicular direction curve )(PD Bλ  with 
By as input, giving 
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Depending on the actual anisotropic behavior of the 
material, a more accurate strain description can be used, 
e.g. taking MS shear xyλ  into account [8]. A similar 
correction as above can be made for the plane strain case. 
 

D.  Displacement 
 Still working in the local xy-axis, the strains yx λλ ,  are 
converted into a displacement ams = (ax,i , ay,i) considering 
the midpoint of the element (xm , ym) as fixed: 
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where i indicates the three element nodes with co-ordinates 
(xi , yi). 

E.  Magnetostriction Forces 
 The mechanical stiffness matrix Ke for an element gives, 
after multiplication with the MS displacement ams of the 
nodes, the nodal magnetostriction forces 

 ms
ee

ms aKF = . (14) 

Equation (14) has to be performed immediately and element 
by element (using Ke) and not for the whole mesh at once 
(using the global matrix K), because the N different 
displacements ams,j , j = 1...N, due to MS in the N elements 
surrounding a node, should not be summed. It is however 
allowed to sum the forces Fe

ms on one node. 
 The MS forces are now introduced in (9) giving 
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First, the magnetic equation of system (15) is solved to give 
A, from which the magnetic forces Fmag are calculated using 
(8) and the MS forces Fms using (14). Then the mechanical 
equation of (15) is solved to give deformation a due to all 
forces. This weakly coupled cascade approach suffices for 



 

 

magnetostriction strains λ < 250 µm/m. For larger strains 
(in linear motors or actuators based on magnetostriction), 
the system (15) has to be iterated a few times, or a strong 
coupling with D≠0 has to be used [6]. 
 The force distribution Fms can also be used for any other 
kind of post-processing based on force distributions, e.g. 
calculating mode participation factors with stator mode 
shapes [3]. 

IV. EXAMPLE 

 Fig.3 shows the magnetic field in one pole of a six-pole 
synchronous machine. Bmax in the teeth is 1.26 T 
corresponding to λ = 2.3 µm/m for 3% SiFe with 1 MPa 
tensile stress. Fig.4 shows the magnetostriction forces on 
the stator for the magnetic field of Fig.3: Fig.4a for a stator 
of isotropic non-oriented 3% SiFe and Fig.4b for a stator of 
anisotropic M330-50A (both materials were modelled with 
Young modulus E = 2.2 1011 Pa and ν = 0.3). In the areas 
of high flux density in the stator, there are MS forces 
parallel to the flux lines and also a set of MS forces 
perpendicular to the flux lines, both seeking to increase the 
circumference of the stator. In the anisotropic case, the 
general MS force pattern remains but the forces appear 
slanted. Fig.5 repeats Fig.4a but also shows the reluctance 
forces Fmag for the magnetic field in Fig.3. It can be seen 
that Fms and Fmag are of the same order of magnitude (the 
size of the nodal force vectors on the teeth tips is 25 N). 
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Fig. 1. Magnetostriction characteristics of non-oriented 3% 
SiFe (solid lines, as a function of tensile stress) and M330-
50A (dashed lines, for rolling and transverse direction).
 

B

Fig. 2. The set of forces (right) representing the strain caused
by magnetostriction due to the magnetic field B (left),
consists of a set forces parallel to B and a set forces
perpendicular to B. 
Fig. 3. Mag
machine. 

Fig. 5. Combined view of reluctance forces on stator teeth 
and magnetostriction forces on stator yoke and teeth sides. 
 
netic field for one pole of a six-pole synchronous
        a) b)  

Fig. 4. Magnetostriction forces on stator for 
a) isotropic non-oriented 3% SiFe, 
b) anisotropic M330-50A. 


