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Abstract. An electrodynamic field is coupled to a magnetic equivalent circuit. The electrodynamic 
problem is formulated by the electric vector potential and discretised by finite elements. The 
magnetic lumped parameter model is described in terms of unknown fluxes and magnetomotive 
forces. The coupled system matrix has a mixed and hybrid nature. In this presentation, the method is 
applied to simulate eddy current distributions in laminated material and losses in a dielectric heater. 
 
Résumé. Un champ électrodynamique est couplé à un circuit magnétique équivalent. Pour le 
problème électrodynamique, on utilise une formulation en potentiel vecteur électrique, dicrétisée par 
éléments finis. Les inconnues du circuit équivalent sont les flux et les forces magnétomotrices. La 
matrice du système couplé est mixte et hybride. La méthode est appliquée à la simulation de la 
distribution des courants induits dans un matériau laminé, et au calcul des pertes d'un système de 
chauffage diélectrique. 
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1 Introduction 

Maxwell's laws indicate a strong liaison between the 
electric and the magnetic field. In almost every model of 
an electrotechnical device, this coupling has to be 
considered. As a consequence, electromagnetic simulation 
has a mixed nature: both electric and magnetic quantities 
appear as unknowns and have to be computed 
simultaneously. To turn from the continuous model over to 
the discrete one, several discretisation techniques, such as 
equivalent circuits, finite elements and boundary elements 
are applicable. As electric and magnetic phenomena are 
linearly related to each other, the discrete coupling of both 
fields is easily realized in one system matrix. If both fields 
are discretised by different methods, a hybrid model is 
achieved. Common examples are the simulations of 
electrical motors. The quasi-static electric fields are 
characterised by linear material characteristics and current 
distributions following clearly determined paths through 
the conductive parts in the model. The magnetic fields, 
however, suffer from arbitrary flux paths and non-linear 
material properties. As a consequence, this type of 
technical devices is efficiently and accurately modelled by 
a magnetic finite element model coupled to an electric 

lumped parameter description. The technical importance 
of this kind of hybrid coupling schemes is reflected by the 
large efforts found in literature to optimise field-circuit 
coupling simulation techniques [1]. 

There are also devices, e.g. laminated materials, 
induction furnaces and dielectric heaters for which this 
assumptions are not true. The electrodynamic field 
requires an accurate description whereas the magnetic 
field can be represented by a magnetic equivalent circuit. 
This paper considers field-circuit coupled electrodynamic-
magnetic models. 

2 Electrodynamic finite element model 

The continuity of the current density J  and Ampère's 
law for the magnetic field strength  are applied by 
defining the electric vector potential T  by 

H
TJ ×∇=  and 

the magnetic scalar potential  by ϕ ϕ∇−= TH . The 
combination of the constitutive relations with Faraday-
Lenz's law yields the governing differential equation 

( ) ϕ∇ωµ=ωµ+×∇ρ×∇ jj TT . (1) 
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The domain Ω  of the electrodynamic model is 
discretised by linear triangular elements . The same 
functions are applied as weighting functions in the 
Galerkin finite element approach. The discrete system of 
equations is 

iN

[ ] [ ] [ ]ijijij fjljk ω=ψω+ , (8) 

with the coefficients defined in Table 1. 
The system of equations is complex, sparse and 

symmetric with typical sizes of 10000 up to a few 100000 
unknowns. Modern Krylov subspace solvers, such as 
Conjugate Orthogonal Conjugate Gradients (COCG) and 
Quasi Minimal Residual (QMR) combined with an 
appropriate preconditioner are very effective to solve these 
systems [3]. 

3 Global magnetic quantities 

The magnetomotive force (MMF) V  along a flux path m

1  is defined by 

( )∫ ϕ∇−=
2

1

l

ldVm . (9) 

The load of the electrodynamic finite element model is 
related to the MMF by 

z

mV
l

=ϕ∇− . (10) 
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for 2D models and 
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Fig. 1: Magnetic circuit elements. 
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for axisymmetric models. An axisymmetric model that is 
symmetric in the tangential direction for α≤θ≤0  with 

 an opening angle different from  has a limited 
technical relevance and is not considered here. The MMFs 
are introduced as extra unknowns in the model. 

α π2

The magnetic flux through a part  of the 
computational domain is 

mΩ

∫
Ω

Ω







µ+µ=φ

m

dTV
z

z

m
D

l
2 ; (12) 

∫
Ω

Ω








π
µ+

π
µ=φ

m

d
r

I
r

V potm
ax 22

. (13) 

These integral relations bring the magnetic flux into 
relation to the MMF and the electric vector potential 
distribution. The discrete form of (12) and (13) is 

[ ] [ ]jmjmm qVG ψ+=φ , (14) 

with the coefficients defined in Table 1. G  denotes the 
magnetic conductivity whereas 

m
[ ][ ]jmjq ψ  can be seen as a 

flux source controlled by the electric current distribution. 
When comparing the magnetic branches defined here, to 

the solid conductor model in magnetic finite element 
models, both correspondences and differences are 
observed. In both cases, a driving force (MMF or electric 
voltage) is applied as an extra unknown. A flow (magnetic 
flux or electric current) is related to the force and the 
(electric or magnetic) vector potentials by a discretised 
integral expression. A difference lays in the fact that solid 
conductors experience induced currents due to the time-
derivative in Faraday-Lenz' law whereas magnetic 
conductors experience excited fluxes (Ampère's law does 
not contain a time-derivative). The time-derivative appears 
in the load of the electrodynamic model. 

4 Coupling to a magnetic equivalent circuit 

The magnetic equivalent circuit (MEC) consists of flux 
sources, MMF sources, reluctances, magnetic inductors 
and the magnetic branches embedded in the 
electrodynamic model (Fig. 1). A current driven inductor 
is represented by a MMF source V  with  the 

number of turns and 
NIapp = N

I  the applied current (Fig. 1b). A 
voltage driven inductor is modelled as a flux source 

ω−=φ jVapp  with V  the applied voltage (Fig. 1a). The 

reluctances of external magnetic paths are represented by 
passive reluctance elements (Fig. 1c). Shading rings as 
constructed in split-pole one-phase induction machines 
and actuators can be modelled by magnetic inductances 
(Fig. 1d). They introduce the phase-lag between the 
applied MMF source and the induced magnetic flux. The 
magnetic branches that are part of the electrodynamic 
model (Fig. 1e) are described by unknown MMFs and the 
integral relations (12) and (13). An equivalence can be 
observed between the elements of the MEC and the 
elements forming the electrical circuit coupled to a 
magnetic finite element model. Only for the electrical 
capacitors and the stranded conductor model, the 
correspondences to some magnetic elements is not 
obvious. 

The circuit model is arranged into a system of equations 
by choosing an appropriate set of unknowns and selecting 
their corresponding equations. The coupling to the 
electrodynamic finite element model follows automatically 
when the magnetically coupled branches are embedded in 
the MEC and treated as such. If no MMF sources and 
magnetic inductors occur in the MEC, a common modified 
nodal analysis of the circuit part is sufficient to obtain a 
sparse and symmetric coupled system. Here, a more 
general topological method is applied. The treatment is 
similar to the approach presented in [4] and ends up with a 
mixed description in terms of both unknown MMFs and 
fluxes aside the electric vector potentials. A tree is traced 
through the MEC. The tree consists of a set of branches 
connecting all nodes of the circuit without forming loops. 
The branches selected to participate in the tree are in order 
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of priority: MMF sources, branches coupled to the 
electrodynamic field, reluctances, magnetic inductors and 
flux sources. The tree branches are modelled by MMFs. 
The MMFs of the MMF sources appear as loads in the 
righthandside. For the other branches, unknown MMFs are 
introduced. The remaining branches are links and form the 
cotree. To these branches, except to the flux sources, 
unknown fluxes are assigned. 

To each tree branch corresponds a fundamental cutset, 
i.e. the combination of the tree branch with a unique set of 
links which removal divides the circuit in two parts. A 
general form of Kirchhoff's current law is applicable to the 
fundamental cutset and relates the flux through the tree 
branch to the known and unknown fluxes through the 
links: 

[ ] [ ] 0=φ+φ lt D . (15) 

with  the fundamental cutset matrix. The branch 
relations for the tree branches relate the fluxes 

D
tφ  to the 

unknown MMFs : tv

[ ] [ ] [ ][ ]jmjtmt qv ψ+=φ G . (16) 

mG  represents the magnetic admittances of the 
reluctances and coupled branches present in the tree. In the 
case of a coupled electrodynamic-magnetic branch, this 
operation introduces the coupling terms in the system 
matrix. 

For the fundamental loops, i.e. the loops formed by a 
link and a unique set of tree branches, the Kirchhoff 
voltage law is expressed by 

[ ] [ ] 0=+ tl vv B . (17) 

with  the fundamental loop matrix. The voltages v  are 
related to the fluxes  by the branch relations of the 
links: 

B l

lφ

[ ] [ ]lmlv φ= Z . (18) 

mZ  represents the magnetic impedances of the reluctances 
and inductances that are part of the cotree. 

The coupled system matrix is 
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The fundamental property of circuit theory TBD −=  and 
the application of the scaling factor zD j lω=ξ= 2ξ  or 

 symmetrises the external circuit equations 
with respect to the finite element equations. Also, the 
coupling mechanism preserves the sparsity of the original 
finite element system. COCG and QMR are still the 
methods of choice. The bordered form of the matrix may, 

however, bring up a worse convergence. Block-
preconditioning or strong coupled multigrid 
preconditioning may be required to achieve acceptable 
solution times [5]. 

ω=ξ=ξ jax

The topological method, introduced here, failes in the 
case of circularly connected electrically coupled branches 
or star-connected magnetic inductors. In that case, 
magnetic inductors occur in the tree and/or coupled 
branches participate to the cotree. A clear assignment of 
unknowns is troublesome. The partial cutset and loop 
eliminations curing this problem are described in [4] and 
are beyond the scope of this paper. 

5 Eddy currents in laminations 

The first example consists of several iron laminates with 
coating material on both surfaces (Fig. 2). The coating 
material is less conductive and less permeable than the 
iron, preventing excessive eddy current losses but at the 
expense of a higher reluctance of the global magnetic flux 
path [6]. Semi-analytical simulations consider the losses in 
a single laminate and neglect the conductivity and 
permeability of the coating material. The model presented 
here deals with coating material with a finite resistivity. As 
a consequence, the closing path of the current may cross 
the coating layers. The eddy current losses are completely 
different from the simplified analytical model. As an 
external condition, the total magnetic flux through the 
model has to equal the applied flux. The MEC represents 
the parallel connection of all domains in the 
electrodynamic model, excited by a flux source (Fig. 2). 

6 Coupling to a magnetic equivalent circuit 

The second example is a dielectric heating device 
(Fig. 3). A cylindrical dielectricum is placed between two 
circular electrodes. Both dielectric and conductive heating 
effects are considered [7]. The geometry and the excitation 
are modelled by an axisymmetric model. As a 
consequence, the MEC consists of the short-circuit 
connection of all magnetic paths. Here, the excitation has 
an electric nature and is applied as a difference in electric 
vector potential. The combination of conductive and 
dielectric effects involves a complex valued resistivity in 
(1). If the geometrical dimensions exceed the wave length, 
a wave phenomenon is observed (Fig. 3). 

7 Conclusions 

An electrodynamic finite element model is combined 
with a magnetic equivalent circuit in one sparse and 
symmetric system matrix. The coupling scheme is applied 
to simulate the eddy current losses in laminated material 
and the total losses in a dielectric heating device. 
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Fig. 2: 2D electrodynamic model of a laminated material 
combined with a magnetic equivalent circuit. 
 

 
 
Fig. 3: 2D electrodynamic model of a laminated material 
combined with a magnetic equivalent circuit. 
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