
IEEE TRANSACTIONS ON MAGNETICS, VOL. 36, NO. 4, JULY 2000 1653

Object-Oriented Implementation of an Interactive and
Automatic Field-Processing Surface

Herbert De Gersem, Uwe Pahner, and Kay Hameyer

Abstract—Post-processing of multiple and hybrid finite element
field solutions requires a post-processor that is more general than
standard available tools. A novel three-level hierarchic post-pro-
cessor structure is proposed. The first level of the post-processing
environment is a library of programming objects representing
mathematical entities such as fields, tables, geometries, meshes and
numbers and of operations manipulating them. Frequently used
post-processing tasks may be coded explicitly in this kernel and
compiled into executable code. An interpreter for mathematical
expressions forms the second level of the post-processor structure.
Characteristic sequences of operations can be gathered in scripts
or in functions and interpreted at run-time. The third level passes
commands to the field parser or to the visualization routines.
Selected simulation examples demonstrate the capabilities of the
chosen approach.

Index Terms—Design automation, finite element methods, object
oriented programming, software libraries.

I. INTRODUCTION

SINGLE field finite element processing is commonly used
in computer aided design [1], computer assisted teaching

[2] and numerical analysis. Standard post-processing tools to
obtain derived information out of field solutions are available.
The design and research in electric and magnetic fields deal with
coupled field problems [3] and automated iterative design pro-
cedures [4]. As a result, the complexity of the post-processing
schemes increases. A choice has to be made between gener-
ally applicable post-processors and easy to use post-processing
tools. The question arises if the desired properties of generality
and convenience can be brought in agreement. In this paper, it
will be shown that a novel object-oriented implementation of
an entire post-processing environment is capable to meet such
requirements.

II. POST-PROCESSORVERSUSPOST-PROCESSING

ENVIRONMENT

Here, a distinction is made between a single post-processor
and a post-processing environment. A post-processor provides
the indispensable interface between the user and the finite ele-
ment solution for a field problem [1]. A lot of numerical field
computations result in a potential field that is different from the

Manuscript received October 25, 1999. This work was supported by the
Belgian “Fonds voor Wetenschappelijk Onderzoek Vlaanderen” (project
G.0427.98) and the Belgian Ministry of Scientific Research, IUAP no. P4/20
on Coupled Problems in Electromagnetic Systems. The research Council of the
K.U. Leuven supports the basic numerical research.

The authors are with the Katholieke Universiteit Leuven, Dep. ESAT,
Div. ELEN, Kardinaal Mercierlaan 94, B-3001 Leuven, Belgium (e-mail:
{Herbert.DeGersem; Uwe.Pahner; Kay.Hameyer}@esat.kuleuven.ac.be).

Publisher Item Identifier S 0018-9464(00)04960-8.

(a)

(b)

Fig. 1. (a) Features of a post-processor and a post-processing environment; (b)
Properties of post-processing software.

quantities of interest. As a result, a post-processing step is re-
quired to derive the values of information from the more ab-
stract finite element solution. Engineers interprete the magnetic
behavior of a device by a plot of the magnetic flux lines or the
magnetic flux density distribution rather then using a plot of the
magnetic vector potential distribution. The aim of the field com-
putation can also be a global quantity such as an inductance
or a force [4]. The post-processor performs a role as a buffer
between the abstract level of the finite element software and
the engineering world of magnetic fluxes, temperatures and dis-
placements. The most important features of a post-processor are
its user-friendliness and its clarity. Therefore, most post-proces-
sors are developed for single field processing and for fields with
one specific nature and discretization. The number of possible

0018–9464/00$10.00 © 2000 IEEE

1654 IEEE TRANSACTIONS ON MAGNETICS, VOL. 36, NO. 4, JULY 2000

Fig. 2. Hierarchical structure of the post-processing environment.

Fig. 3. Class hierarchy of the different entities.

(a)

(b)

(c)

Fig. 4. (a) Simulation example of a magnetic selector; stable position of
the magnetic selector (b) for negative excitation and (c) for positive current
excitation.

post-processing operations is often limited and forbidden oper-
ations are excluded.

A post-processing environment on the other hand, incorpo-
rates and couples fields of different natures and with hybrid dis-
cretization techniques. It is possible to adapt the environment
to future requirements. It is also intended to use parts of the
post-processing environment to build problem specific post-pro-
cessors. For research and advanced engineering purposes, an
interactive and scripted use of the environment is offered. It
is difficult to provide a clear, general and robust syntax and
sufficiently protect against unacceptable use of post-processing
commands. The high number and the abstract formalism of the
commands, require an expert to work with the environment.
Fig. 1(a) shows the additional post-processing features of the
general environment compared to those of the single tool. The
properties of a good post-processing software are pointed out
in Fig. 1(b).

III. OBJECT-ORIENTED DESIGN

The development of a software that is both, general and trans-
parent, requires a modular approach [5]. Modularity in opera-
tions is achieved by splitting up complex operations into com-
binations of simpler ones. This requires a top-down structure of
the software design. However, one of the major difficulties in
a general post-processor is the handling of a huge amount of
data of different origine and nature. Fields and numbers have
their own storage protocols. Modularity for data treatment is
maintained by using a data-driven programming philosophy.
Additionally, operations may operate on data independently of
its nature, may be specific for one kind of data or may com-
bine different forms of data into a new one. Modularity on the
level of data and their characteristic operations, is obtained by
choosing an object-oriented approach. The underlying concept
of object-oriented design is that one should treat both, data and
operation in the software system, as collections of co-operating
objects within a hierachy of classes [6]. This means that a link
is made between the top-down structured and data-driven de-
sign methods. Data are gathered in objects. Operations working
upon a single as well as upon multiple objects are defined as
member or friend functions associated with the appropriate ob-
jects. Progress in execution is obtained as state changes of ob-
jects due to functions operating on them. The implementation
uses the higher-order C++ programming language [5], [7].

DE GERSEMet al.: AN INTERACTIVE AND AUTOMATIC FIELD-PROCESSING SURFACE 1655

Fig. 5. Interactive commands for the post-processing environment.

(a) (b)

Fig. 6. (a) Flux line plot of the magnetic field with the curve for field evaluation and (b)r-component of the magnetic flux density in the magnetic selector.

The conceptual properties of object-oriented design,
especially attractive for developing a post-processing environ-
ment, are

1) Data hiding: As some entities in the post-processor
require a large amount of data, gathering data in struc-
tures is extremely useful. A mesh is easily told to be
a collection of triangles but consists of several lists
representing the elements, the nodes and the mesh
connectivity. The construction of a mesh class hides
the practical data manipulating from the higher level
programming.

2) Member functions:Functions can be associated with the
data upon which they operate. A function rotating parts
of a mesh for instance becomes a member function of
the mesh class.

3) Abstraction and inheritance:Fields, tables, numbers and
symbolic expressions are mathematical quantities upon
which mathematical operations are defined. These classes
share a common part of data and functions. Meshes and
geometries have a topological nature. Translation and ro-
tation are member functions of a common class repre-
senting the topology. At last, all classes are entities and
may be represented by a name, treated by symbolic ex-
pressions and stored in memory or on disk.

4) Function overloading:A lot of operations have the same
nature but different practical implications on different ob-
jects. The addition of numbers and fields are somehow re-
lated in the mathematical sense but differ from the low-
level programming point of view. Function overloading
enable the abstraction of operations.

1656 IEEE TRANSACTIONS ON MAGNETICS, VOL. 36, NO. 4, JULY 2000

Additionally, standard building blocks such as single/double
linked lists, dictionaries and handle classes, are used to over-
come problems of data storage, data indexing, multiple referred
objects and memory management [7].

IV. HIERARCHICAL STRUCTURE

To satisfy the required but contradictory properties of gener-
ality and transparancy, the post-processing environment is built
as a three-level hierarchy (Fig. 2). As top-down principle, the
levels represent an increasing abstraction from the concept of
the physical field to the concept of the finite element solution.
The user is invited to interact with the environment at the level
that is most suited for his application. Visualization and online
post-processing tasks are performed in an interactive top level.
Problem specific shells, repetitive tasks and mathematical field
computations operate on the second level. Frequently used rou-
tines, problem dependent post-processing tools and new finite
element applications arise from specific compilations using the
building blocks of the lowest level.

A. Level I: Constitutive Post-Processing Objects

The mathematic offers a general and robust framework to ex-
press and simulate the physical reality and its behavior. In a first
step all present quantities are defined. Fields, meshes, values, ta-
bles, geometries and symbolic expressions of them are charac-
terized by their corresponding objects (Fig. 3). All entities may
additionally be complex quantities or vectors. In the proposed
post-processing environment, all fields have a discrete nature,
they are solutions on a certain discretization of the domain. Ta-
bles are lists of data samples. In a second step, all operations
operating on single as well as multiple objects, are defined. A
mathematical syntax combined with a programming language,
capable of overloading functions and operations, provide a nat-
ural mechanism for this.

The library of objects and operations can be shared between
the finite element solvers and the post-processing environment.
Common objects ensure the compability between the finite
element solvers and the post-processing tools. For instance,
new features for meshes will be automatically transferred to
the post-processing environment if both applications share the
same mesh object.

At this stage, the post-processing environment has become
a box of bricks for coding finite element computations. The
classes hide the low level data and operations of the objects from
unauthorised use. Rather circumstantial operations on fields as
for instance the multiplication of two fields and with dif-
ferent meshes and/or elements of various polynomial degrees,
become simply expressable as “f1f2.”

B. Level II: Symbolic Parser for Finite Element
Post-Processing

If multiple fields, curves, values and meshes are involved, the
post-processor requires either a stack structure or a symbolic
driver, able to distinct and combine the different entities [1]. A
stack oriented post-processor puts all entities on a stack. Stack
operations shuffle the stack to present the right entities to the
calculation engine. For entities with a different nature, multiple

(a)

(b)

Fig. 7. (a) B along a line in the middle of the airgap of the magnetic selector
and (b) force acting on the translator as a function of its position relative to the
excitation coil of the magnetic selector.

stacks can be set up. Organizing a stack can be rather clumsy for
the user. Therefore, here, a choice is made for the more mathe-
matically related symbolic way of entity management. A unique
name is associated with each entity. A new entity is built by a
symbolic expression in terms of the names of yet existing en-
tities. As long as the data itself is not required, the new entity
only exists as a symbolic expression. When the entity has to be
reported, visualised or stored, the symbolic expression is parsed
and the received data replaces the symbolic expression associ-
ated with the user-defined name. This approach of postponed
calculation prevents the computation of entities that are not fur-
ther used or visualised.

As some post-processing tasks are characteristic and fre-
quently used, the possibility to script sequences of operations
is provided by this software implementation. This is an easy
way to extend the effectiveness of the general post-processing
environment to problem specific shells and user-defined

DE GERSEMet al.: AN INTERACTIVE AND AUTOMATIC FIELD-PROCESSING SURFACE 1657

Fig. 8. C++ engine for axisymmetric force computation using the Maxwell stress tensor.

post-processing routines. Functions with their associated
parameters and return values are used as a formalism.

The syntax of the expressions have the same mathematical
nature as the operations defined in level I. This enables the
transfer of the script from the second to the first level, its compi-
lation into fast executable code and/or its addition as a module
to the post-processing environment. New post-processing fea-
tures may originate from user interactions and scripting. As soon
as they are mature, the script evaluates to a proper part of the
post-processing environment.

C. Level III: Command Line Interpreter

The topmost level provides aside the symbolic parser an in-
teractive way for visualization. It ensures the interface to other
software.

V. APPLICATION

The developed post-processing environment is used for the
post-processing of an axisymmetric magnetic model. A mag-
netic selector is excited by a coil embedded in an iron C-core
(Fig. 4). The moving part consists of two inversely magnetised
permanent magnets separated by iron yokes. Depending on the
sign of the excitation current, one of both possible stable posi-
tions is chosen (Fig. 4). The magnetic field is computed using
the potential in the axisymmetric differential equation
[8], [9].

(1)

The magnetic flux density is

(2)

The force is computed using the Maxwell stress tensor [1]. For
axisymmetric problems, the force components in the-direc-
tion and the -direction vanish. The force in the-direction is
given by

(3)

along a line parallel to the axis of symmetry and

(4)

along a line perpendicular to the axis of symmetry.
Fig. 5 shows the interactive post-processing commands and

parameters for the axisymmetric magnetic problem. The syntax
uses operation and function calls. Partial differentiation is per-
formed using the functions “ddx” and “ddy .” A field is eval-
uated on a contour using the “/”-operator. The post-processor in-
cludes the definition of a contour, the computation of the mag-
netic flux density using (2), the calculation of the force in the
-direction using (3) and the visualization of the fields and their

restrictions (Figs. 6 and 7(a)).
As force computation is technically important and frequently

used, a stand-alone C++ routine is designed and compiled
(Fig. 8). The force calculation tool uses a general contour
that may consist of several successive primitives, arbitrarily
oriented. Nevertheless, the syntax remains the same as on the
interactive level. In the example, the compiled executable is
used for the quick, automated and parametrised computation of
the force as a function of the position of the translator relative
to the excitation part of the magnetic selector (Fig. 7(b)).

VI. CONCLUSIONS

With the recent progress in coupled problem modeling and
hybrid field discretization techniques, suitable post-processing

1658 IEEE TRANSACTIONS ON MAGNETICS, VOL. 36, NO. 4, JULY 2000

tools are recommended. The development of a general post-pro-
cessing environment which is able to process both multiple and
hybrid fields and extendable to future requirements, attracts par-
ticular attention to the concept and to the programming tech-
niques. Here, the choice for a three-level structure enables ade-
quate interaction with the environment for both normal skilled
users and researchers. Object-oriented programming techniques
such as data and function hiding, inheritance and function over-
loading, create a fire-wall between the low-level experimental
coding that is permanently under construction, the mathemat-
ical parser, providing the general field processing, and the user
interface for convenient post-processing. The three-level hier-
archy supports also the automating features. The mathematical
parser interpretes scripts. By using the programming objects of
the lowest level, scripts may be compiled and added to the post-
processing environment. Simulations of a technical example,
a magnetic selector, demonstrate the suitability of the devel-
oped object-oriented approach. The described post-processor
is succesfully implemented in the in-house software package
Olympos2D.

REFERENCES

[1] D. A. Lowther and P. P. Silvester,Computer-Aided Design in Mag-
netics. Berlin and New York: Springer-Verlag, 1985.

[2] K. Hameyer, R. Belmans, R. Hanitsch, and R. M. Stephan, “CAT: Com-
puter assisted teaching in magnetics,”IEEE Trans. Magn., vol. 34, no.
5, pp. 3304–3307, 1998.

[3] K. Hameyer, J. Driesen, H. De Gersem, and R. Belmans, “Computation
of quasistatic electromagnetic fields with respect to coupled problems,”
in Proc. of the 8th Int. IGTE Symp. on Numerical Field Calculation in
Electrical Engineering, 1998, pp. 100–105.

[4] U. Pahner, R. Mertens, H. De Gersem, R. Belmans, and K. Hameyer,
“A parametric finite element environment tuned for numerical optimiza-
tion,” IEEE Trans. Magn., vol. 34, no. 5, pp. 2936–2939, 1998.

[5] B. Stroustrup,The C++ Programming Language, 2nd ed. Reading:
Addison-Wesley Publishing Company, 1992.

[6] G. Booch,Object-Oriented Analysis and Design. Redwood City: The
Benjamin/Cummings Publishing Company, 1994.

[7] B. Sroustrup,The Design and Evolution of C++. Reading: Addison-
Wesley Publishing Company, 1994.

[8] K. J. Binns, P. J. Lawrenson, and C. W. Trowbridge,The Analytical
and Numerical Solution of Electric and Magnetic Fields. Chichester:
Wiley, 1994.

[9] P. P. Silvester and R. L. Ferrari,Finite Elements for Electrical Engineers,
2nd ed. Cambridge: Cambridge University Press, 1990.

