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Algebraic Multigrid for Complex Symmetric Systems
D. Lahaye, H. De Gersem, S. Vandewalle, and K. Hameyer

Abstract—The two dimensional quasistatic time-harmonic
Maxwell formulations yield complex Helmholtz equations.
Multigrid techniques are known to be efficient for solving the
discretization of real valued diffusion equations. In this paper
these multigrid techniques are extended to handle the complex
equation. The implementation of geometric multigrid techniques
can be cumbersome for practical engineering problems. Algebraic
multigrid (AMG) techniques on the other hand automatically
construct a hierarchy of coarser discretizations without user
intervention given the matrix on the finest level. In the linear
calculation of an induction motor the use of AMG as precondioner
for a Krylov subspace solver resulted in a six-fold reduction of the
CPU time compared to an optimized incomplete LU factorization
and in a twenty-fold reduction compared to symmetric successive
overrelaxation.

Index Terms—Eddy current, iterative methods.

I. INTRODUCTION

SINUSOIDALLY excited eddy current problems arise,
e.g., in the design and optimization of induction furnaces,

transformers and alternating current machines, such as induc-
tion motors. They are commonly treated as single frequency
time-harmonic magnetic field problems [1]. Their finite
element discretizations result in sparse, complex symmetric
systems of equations. Solving such systems often absorbs more
than 90% of the overall CPU-time of the numerical simulation
[2]. Hence, an investigation of iterative methods specific for
this kind of matrices is appropriate.

II. TIME-HARMONIC MAGNETIC FORMULATIONS

Assuming that the electromagnetic quantities are varying at
low frequency and sinusoidally in time, and that the geometry
is two dimensional, the Maxwell equations can be simplified to
a scalar Helmholtz equation with complex shift [1]:

(1)

In this equation , , , , , and are the phasor of the
-component of the magnetic vector potential, the reluctivity,

the complex unit, the angular frequency, the conductivity and
the phasor of the applied source current density.
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We solve equation (1) numerically using linear triangular fi-
nite elements. The exact solution is approximated by a linear
combination of real nodal form functions

(2)

where the complex coefficients in the expansion have to be
determined. These coefficients are calculated by solving the
system of algebraic equations

(3)

with

(4)

where the elements of the real and imaginary partand
of the matrix are given by

(5)

and

(6)

and where the components of the right-hand side vectorare
given by

(7)

From (5) and (6) follows that is a sparse and complex sym-
metric matrix, i.e., .

This paper deals with solving (3) efficiently. Motivated
by previous experience [3], this will be performed by using
an algebraic multigrid solver. Algebraic multigrid solvers
were orginally developed to treat symmetric positive definite
problems. The purpose of this work is to consider its use to
solve complex valued problems.

III. GEOMETRIC MULTIGRID

Multigrid methods for solving partial differential equations
[4]–[6] are iterative methods that combine discretizations on
grids of varying mesh density. High frequency error compo-
nents are damped on a fine grid, whereas low frequency error
components are transferred to the next coarser grid. On this next
coarser grid, low frequency components appear as high frequent
ones again, and the multigrid idea can be applied recursively.
This recursion terminates when the cost of solving the linear
system on the coarse grid becomes negligible.

To describe the two grid method formally, let
and be a fine and coarse grid discretization of
(1), respectively. Given an approximation to the fine grid
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equations, applying of few (typically one or two) steps of an
stationary iterative scheme

where (8)

like damped Jacobi ( is the scaled diagonal of ) or
Gauss–Seidel ( is the lower triangular part of ) damps
high frequency components in the error . Low
frequency error components are eliminated by restricting the
residual to the coarser grid by the restriction
operator , solving the defect equation

(9)

on the coarser grid, interpolating the resulting correction using
the interpolation operator back to the fine grid and adding it
to the existing approximation

where

(10)

As the last operation introduces high frequency components
again, a few post smoothing steps may be performed.

Multigrid methods are known to beoptimal in the sense that
the number of iterations required to reach a fixed accuracy is
independent of the mesh size. Krylov subspace methods can be
applied to accelerate multigrid techniques. In such cases multi-
grid acts as a preconditioner. Using multigrid in this way also
tends to stabilize the convergence behavior.

IV. A LGEBRAIC MULTIGRID

Electromagnetic problems of technical importance are often
posed on complex geometries. The coefficients in the governing
partial differential equations may be strongly varrying or have
large discontinuities. Computational grids are therefore un-
structured and refined to capture local effects if necessary. For
such difficult problems efficientgeometricmultigrid methods
are cumbersome to implement. It not immediately clear how
a sequence of coarser meshes can be constructed, and which
smoothers are appropriate for the given problem.

Algebraic multigrid (AMG) methods offer a solution to
this problem by providing the advantages of geometric multi-
grid techniques in a black box solver. This black box solver
requires as sole input the linear system to be solved. In the
literature several approaches to AMG can be found (see [7]
and references therein). In the following we will describe the
Brandt–Ruge–Stüben approach to AMG for real symmetric
positive definite problems [8].

The AMG solution process can be divided in two phases. In
a setup phase, the algorithm constructs fully automically (i.e.,
without user intervention) a hierarchy of coarser meshes and
the corresponding linear systems. To do so, the algorithm ex-
tracts from the fine grid matrix information about the strength
of coupling between different nodes. In the cycling phase, this
hierarchy of discrete problems is used to solve the problem by
usual multigrid cycling.

When constructing the hierarchy of coarser discretizations,
algebraic multigrid tries to balance the quality of the smoother
and the coarse grid correction. Error components not damped
by the coarse grid correction must be taken care of by the

smoother and vice versa. The smoother in AMG is a simple
point Gauss–Seidel smoother and a major part of the work is
invested in building a coarse grid correction that makes up for
the simplicity of the smoother. The coarser grid equivalent
of the system matrix is built by using the Galerkin formula

(11)

For symmetric problems the restriction operator is chosen to be
the transpose of the prolongation operator: . Given
the smoother, the restriction and the coarser level discretization,
only the selection of coarse grid points and the construction of
the interpolation operator remains to be detailed.

The coarse grid selection induces a partition of the fine grid
variables into two disjoint sets , with and

the coarse grid and fine grid variables respectively. The next
coarse grid is then identified with . Each fine grid point

is interpolated from a subset of the coarse
grid variables, called theinterpolatory variablesto point . The
interpolation operator has the form:

if

if (12)

The interpolation is constructed by requiring that smooth er-
rors are accurately transferred from coarse to fine grids. The
concept of smoothness can be defined purely algebraically:al-
gebraicallysmooth errors satisfy

(13)

where . This simple fact about smooth
errors gives the basic information from which the interpolation
operators are deduced. The construction of interpolation based
solely on (13) results in an interpolation for which the size of
the sets of interpolation variables , is too large, re-
sulting in computationally too expensive cycles. In truncating
the size of these sets, each fine grid point has to remain suffi-
ciently connected to its set of interpolatory coarse grid points.
The truncation strategy leads to a heuristics to select the coarse
grid. Once the coarse grid has been selected, the interpolation
weights in (12) can be calculated.

V. GEOMETRIC MULTIGRID FOR THE COMPLEX HELMHOLTZ

EQUATION

By setting in equation (1), the Poisson equation is
obtained. For the latter type of equation, multigrid techniques
are known to be efficient. To investigate the influence of the
value of on the convergence behavior of geometric multigrid,
we consider the following model differential problem on the
square ,

(14)

where is the permeability, subject to inhomogeneous
Dirichlet boundary conditions on the whole boundary ofsuch
that for the function

(15)
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TABLE I
NUMBER OF MULTIGRID CYCLES AS A FUNCTION OF MESH WIDTH FOR

DIFFERENTFREQUENCIES

is the exact solution to the problem. This solution is independent
of . We discretize the problem on a regular mesh with mesh-
width , in both and direction using
linear triangular finite elements. The various parameters have
the following values: m, m ,

TmA , Am , and , where
is the frequency. The matrix of the resulting linear system can

be represented by the stencil

(16)

We solve this linear system using geometric multigrid. We
choose standard coarsening, the W-cycle, seven-point
restriction and interpolation and red-black Gauss–Seidel as
smoother [6]. In Table I we listed the number of cycles required
to reduce the initial residual by a fixed amount (namely by

) as a function of the mesh width for different frequen-
cies. From Table I, we conclude that for a given frequency, the
required number of cycles reaches an upper limit, indicating
that the convergence is mesh size independent.

In Table II, we listed the asymptotic convergence factorof
the multigrid algorithm as a function of the frequency for var-
ious mesh widths. From Table II, we conclude that the speed of
convergence decreases with increasing frequency untill the fre-
quency reaches a threshold value. By increasing the frequency
beyond this value, the multigrid algorithm speeds up again.

The fast convergence for high frequencies relative to the mesh
width is irrelevant from a practical point of view as for such
high frequencies a finer discretization is required to ensure the
accuracy of the numerical solution. Furthermore, equation (1)
is derived from the Maxwell equations assuming low frequency
and thus neglecting the displacement current density.

VI. A LGEBRAIC MULTIGRID FOR COMPLEX SYMMETRIC

SYSTEMS

To solve the complex linear system (3) by AMG, we rewrite
the complex system as an equivalent real system of double di-
mension, and use a solver forsystemsof coupled PDE’s. The de-
velopment of AMG solvers for systems of PDE’s is still a topic
of ongoing research. Preliminary ideas can be found in [8]. In
our experiments we use the code currently being developed by
K. Stüben at GMD [7].

TABLE II
ASYMPTOTICCONVERGENCEFACTOR AS A FUNCTION OF THEFREQUENCY FOR

DIFFERENTMESH WIDTHS

Fig. 1. Finite element mesh of an induction motor.

In rewriting the complex system as an equivalent real one,
two alternatives exists: either a nonsymmetric variant

(17)

or an indefinite variant

(18)

For our purposes, (17) has to be chosen as the code requires the
diagonal of the system matrix to be positive.

The system-AMG code builds the coarser discretizations
solely based on the diagonal blocks of the matrix (17), which,
in our case, is just the real part of matrix (3). We use a V-cycle,
with one pre and post smoothing step, and use the code as a
preconditioner for BiCG-STAB [9].

VII. A PRACTICAL EXAMPLE

To compare the solution time of different solvers, a 400 kW
induction machine is taken as an example. Thanks to symmetry,
only two poles have to be modeled. The solid rotor bars are short
circuited. The stator windings are excited by a three-phase alter-
nating current system of 154 A. The finite element mesh and the
magnetic flux lines are presented in Figs. 1 and 2 respectively.
The final mesh was obtained after 4 adaptive refinement steps,
and contains a total of 151 504 elements.

We compare the AMG/BiCG-STAB solver with symmetric
successive overrelaxation preconditioned Quasi Minimal
Residual (QMR) and with incomplete LU (ILU) precondi-
tioned Complex Orthogonal Conjugate Gradient (COCG)
solvers [10]. The COCG solver was taken from the PETSc
package [11], and before applying the ILU preconditioner, the
matrix was reordered to reduce the bandwidth. In Fig. 3, we



1538 IEEE TRANSACTIONS ON MAGNETICS, VOL. 36, NO. 4, JULY 2000

Fig. 2. Magnetic flux line plot of an induction motor.

Fig. 3. Timings of different preconditioned iterative solvers.

plotted the CPU-time required by the different solvers to solve
the linear system at each of the four adaptation steps.

VIII. C ONCLUSIONS

We presented the application of an algebraic multigrid code
for systems of coupled PDE’s to solve linear systems resulting

from the finite element discretization of quasistatic time-har-
monic Maxwell equations. In the linear calculation of an in-
duction motor the use of AMG as a precondioner resulted in a
six-fold reduction of the CPU time compared to an optimized in-
complete LU factorization and in a twenty-fold reduction com-
pared to symmetric successive overrelaxation.
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