
IEEE TRANSACTIONS ON MAGNETICS, VOL. 36, NO. 4, JULY 2000 1531

Solution Strategies for Transient, Field-Circuit
Coupled Systems

Herbert De Gersem, Ronny Mertens, Domenico Lahaye, Stefan Vandewalle, and Kay Hameyer

Abstract—Transient simulation time for field-circuit coupled
models of realistic electromagnetic devices becomes unacceptably
high. A magnetodynamic formulation is coupled to an electric cir-
cuit analysis, yielding a sparse, symmetric and indefinite matrix.
The unknown circuit currents correspond to negative eigenvalues
in the matrix spectrum. The Quasi-Minimal Residual method
performs better than the Minimal Residual approach that is
restricted to positive definite preconditioners. The positive definite
variant is solved by the Conjugate Gradient method without
explicitly building the dense coupled matrix. As an example, both
approaches are applied to an induction motor.

Index Terms—Electromagnetic coupling, finite element
methods, induction motors, iterative methods.

I. INTRODUCTION

F INITE element simulation techniques are commonly used
in the design and optimization of electromagnetic devices.

The computation of the dynamic behavior of magnetic fields
involves the simulation of the electric network that excites or
is excited by the magnetic field. As the differential equations
representing both phenomena are linearly dependent upon each
other, simulation by means of one coupled system matrix is par-
ticularly attractive [1]. For a large range of technical devices
operating at low frequencies, a clear distinction can be made
between electrically conducting and nonconducting media. As
a consequence, a description of the electric behavior of the de-
vice in terms of a lumped parameter model may reach a suffi-
cient accuracy. The relative difference in permeability, however,
is much lower. Moreover, the permeability may be nonlinear and
the paths followed by the magnetic flux are usually rather irreg-
ular. As a consequence, the magnetic model requires a finer dis-
cretization, e.g., by means of finite elements.

Both the coupling of two physical phenomena and the hybrid
nature of the discretization methods assign specific properties to
the coupled system matrix. Magnetodynamic models of trans-
formers, induction machines and induction furnaces are rela-
tively small but have to be simulated many times. In the case
of transient simulation, a huge number of sequential solutions
is required. This fact justifies a detailed study of the influence
of the field-circuit coupling mechanism on the efficiency of the
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system solution. In this paper, coupling schemes are selected
from the viewpoint of the resulting system properties. Appro-
priate iterative solving techniques for the coupled system matrix
are developed. The coupling techniques are judged upon the ef-
ficiency of the applicable iterative solvers.

II. M AGNETIC FINITE ELEMENT MODEL

A 2D quasistatic magnetic model is described by the magne-
todynamic equations

(1)

(2)

(3)

(4)

is the -component of the magnetic vector potential.and
are the reluctivity and the conductivity.is the length of the

2D model. A solid conductor is described by (1), (2) and (3),
(4) as a function of the voltage , the current and the
admittance . Eddy currents in the stranded conductor model
are neglected. A stranded conductor with turns and cross-
section , is described by (1), (2) and (4) as a function of
the current , the voltage and the resistance .
and are the domains in the 2D model corresponding to the
solid conductor and the stranded conductor respectively.

For space discretization, linear triangular finite elements
are used. For time discretization, the Galerkin time-stepping
scheme ( ) with fixed time step is applied. The
mechanical displacement is considered by a moving band
technique [2].

III. ELECTRIC CIRCUIT COUPLING

The field-circuit coupling, applied here, is the hybrid analysis
method described in [3] and [4]. As the method allows both un-
known currents and unknown voltages to appear in the model,
the formulation can serve as a reference from which more spe-
cific approaches can be derived. A tree, traced through the cir-
cuit, divides the circuit into two sets of branches.

The tree branches correspond to the admittance matrix,
the unknown voltages and their associated cutset equations.
The links correspond to the impedance matrix, the unknown
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currents and their associated loop equations. The coupled
system is

(5)

, , and follow from discretizing (1)–(4) [3].
and are the fundamental cutset and loop matrices

associated with the tree. The righthandside of (5) depends
on the known voltage and current sources and the solution at
the previous time step. Symmetry is preserved by the factor

and the property [5].
Field-circuit couplings are required to be reliable and appli-

cable to arbitrary connected circuits. In the hybrid approach ap-
plied here, the difficulties related to the particular connections
of stranded conductors, solid conductors, capacitors and induc-
tors are resolved by the tree tracing procedure. Optional desired
properties of the resulting coupled system are symmetry and
sparsity. In this paper, the impact of these properties on the ef-
ficiency of the iterative system solution, is examined.

From (5), some common coupling approaches may be de-
rived. The elimination of all corresponding to solid conduc-
tors, yields the loop current formulation described in [1] and [6].
The elimination of all currents that are not related to stranded
conductor links, together with the transformation from branch
voltages to nodal voltages, leads to the popular nodal analysis
method presented in [7]. These approaches combine currents
and voltages, the one as principal circuit unknowns, the other
whenever indispensable to retain the sparsity. The further elimi-
nation of stranded conductor link currents [7] or solid conductor
voltages [8] yields a pure nodal analysis or a pure loop current
analysis but spoils the sparsity of the finite element equations.

IV. SYSTEM PROPERTIES

The coupled system matrix consists of finite element
equations related to the nodes in the FE mesh, cutset
equations related to unknown tree branch voltages and
loop equations related to unknown loop currents. The spec-
trum of the coupled system matrix of a benchmark model is pre-
sented in Fig. 1. The finite element diagonal block
is related to the parabolic and elliptic equations (1)–(2) and is
positive definite. Both immittance matrices are diagonal. For the
most general case described in [3], it is easily shown that the
transformed immittance matrices remain positive definite. The
physical duality of currents with respect to voltages and mag-
netic vector potentials, appears in the matrix as indefiniteness
caused by the negative definite diagonal block . An appro-
priate congruence transform and Sylvester’s law of inertia re-
veal that the number of negative eigenvalues equals the number
of loop equations (e.g., 1 in Fig. 1) [9]. Similarmixedformula-
tions appear in other disciplines, e.g. the numerical solution of
the Stokes problem [10] and mixed formulations for magneto-
statics [11]. The finite element method applied here, is also ahy-
brid method as it involves the simultaneous approximation of a
field defined on the finite element mesh, voltages defined across
the fundamental cutsets and currents defined in the fundamental

Fig. 1. Spectrum of a benchmark system matrix.

loops. The matrix may be ill-scaled due to relative differences
in material properties and discretization sizes.

V. KRYLOV SUBSPACEACCELERATION

Large sparse systems are commonly solved by Krylov sub-
space iterative methods [12]. These methods search for an ap-
proximate solution of the system in a Krylov subspace of in-
creasing dimension. Here, the solution procedure benefits from
the symmetry of the system. For symmetric systems, a base
for the Krylov space can be constructed by the Lanczos pro-
cedure. In this procedure, the orthogonalization of a new vector
with respect to the current base consists of a recurrence rela-
tion only involving the three most recently obtained base vec-
tors. The orthogonalization in the Arnoldi procedure suited for
nonsymmetric matrices, has to be performed with respect to all
previous base vectors. This requires all base vectors to be stored
in memory and yields a growing computational cost per itera-
tion step.

Krylov subspace solvers for symmetric, indefinite systems
are the Minimal Residual (MINRES) method [13] and recently
a variant of the Quasi Minimal Residual (QMR) method [14].

VI. PRECONDICTIONING

Preconditioning is recommended as ill-conditioned prob-
lems turn out to converge slowly [12]. MINRES, however, is
restricted to positive definite preconditioners. As indefinite
preconditioning is expected to establish a better convergence,
MINRES is replaced by QMR. Common preconditioning
techniques such as Jacobi, Gauss–Seidel, and Symmetric
Successive Overrelaxation (SSOR), are extended to their block
variants. Within each block, a preconditioner tuned to the
corresponding part of the problem can be applied. A Jacobi
block preconditioned system looks like

(6)
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Fig. 2. Implicit multiplication procedure forSxSxSx.

with an appropriate preconditioner for the finite element ma-
trix part,

(7)

(8)

(9)

and

(10)

VII. POSITIVE DEFINITE ALTERNATIVE

The elimination of in (5) yields a positive definite system
matrix, equivalent to the nodal circuit analysis presented in [7].
The explicit substitution of the last row of (5) in
would create a dense Schur complement. For the numerical
example, described below, the coupled system (5) has 47 000
nonzero elements whereas the explicit Schur complement
contains 1 989 732 nonzeros. This would destroy the efficiency
of the matrix-vector product in the iterative method.

Here, a Schur complement of the whole circuit part is con-
structed.

(11)

The positive definite system is solved by the Conjugate Gradient
(CG) method. It is possible to design an implicit multiplication
procedure for (Fig. 2). is factorized in advance:

(12)

with an upper triangular and a diagonal matrix. The
corresponding computational cost is negligible because
contains typically only a few hundred equations. This implicit
approach enables the application of the underlying positive
definite system without requiring the explicit construction of
the matrix.

A difficulty of this approach is the choice of an appropriate
preconditioner for . The proper matrix is not available and the

Fig. 3. Magnetic flux lines of the induction motor.

application of Jacobi, Gauss–Seidel, or SSOR preconditioning
would require a similar implicit approach. Another possibility
is applying a good preconditioner for as a precon-
ditioner for . Then, the solution process may benefit from an
available powerful preconditioning technique for parabolic par-
tial differential equations, such as Incomplete Cholesky or Alge-
braic Multigrid (AMG) [15]. Although, it should be mentioned
that this preconditioner does not count for the electric behavior
of the system. As a consequence, the efficiency of this approach
has to be proved experimentally for each particular model under
consideration.

VIII. A PPLICATION

The geometry of a four-pole 45 kW induction motor is dis-
cretized by 6010 elements (Fig. 3). The topological circuit treat-
ment yields 314 extra unknown voltages, 40 extra unknown cur-
rents and their corresponding equations in the coupled system.
In the first numerical experiment, QMR featuring the indefinite
SSOR preconditioner is compared to MINRES with a corre-
sponding definite preconditioner, denoted by “SSOR.” The
SSOR preconditioner applied to QMR, factorized as is
adapted to MINRES as where the diagonal elements
of are the absolute values of the diagonals of. For the
models simulated here, the possibility to apply indefinite pre-
conditioning is more important than the true minimization prop-
erty of MINRES (Fig. 4). The effect of Jacobi block precon-
ditioning, denoted by “JAC(*, *),” is established in Table I. It
can be concluded that the presence of the electromagnetic cou-
pling terms in the preconditioner, has a substantial influence on
the convergence behavior of the Krylov subspace solvers. The
Generalized Minimal Residual (GMRES) method, relying upon
the Arnoldi procedure, is used to demonstrate the importance of
matrix symmetry of the coupled system for the efficiency of the
iterative solution. In the third experiment, the positive definite
Schur complement is solved. The efficiency of several precon-
ditioners for CG is examined in Fig. 5 and Table I. AMGCG is
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Fig. 4. Convergence of QMR with an indefinite preconditioner compared to
MINRES with a positive definite preconditioner.

TABLE I
ITERATION COUNTS AND COMPUTATION TIMES OF THEITERATIVE SYSTEM

SOLUTION FOR 1 TIME STEP OF THETRANSIENT SIMULATION

Fig. 5. Convergence of CG applied to the Schur complement preconditioned
by SSOR or AMG.

promising compared to all other approaches. Better convergence
is expected if the AMG technique is extended to incorporate the
circuit couplings.

IX. CONCLUSIONS

The properties of the hybrid system matrix of a transient
field- circuit coupling model, are studied. The Quasi-Minimal
Residual method, solving the sparse, symmetric and indefinite
system, is suited for indefinite preconditioning and establishes
a better convergence when compared to the Minimal Residual
method. Block preconditioning enables the application of pre-
conditioning techniques for the partial problems. The positive
definite alternative formulation is implicitly built and solved
by the Conjugate Gradient method. The techniques developed
here, increase the speed and the reliability of transient simula-
tions, here as an example applied to an induction motor. The
numerical results reveal that preserving the symmetry of the
system is very important. It is not required that the coupled
system remains positive definite.
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