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of the Optimization Process
Uwe Pahner and Kay Hamever f
. ct—Recently, the combination of global convergent A
hastic search methods with approximation schemes /\
lial basis functions has been introduced. This paper prcscnts anew /\/\
pproach: instead of a procedural sequencing of ap
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orithm and optimization .llLurnhm this optimization sthvmc is 104 /rr\‘h—v—\’((\ W/%,\

haracterized by a direct and adaptive coupling of both algorithms. AMMM // /m

i approximation of the feasible space is constructed and updated 5.

N/ /
luring the progress of the evolutionary search. If the approxima- \\W\WQ %W rrt]

AT E S O eV T W ' cqeareh al- /
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significant reduction of function calls, which is desirabie if the A 4
unction evaluation is computational expensive (e.g. involving fi-
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Figo L Visualization of the objective function suface of the theoretical

optimization problem detined by (1) and (2) with the global optimum at
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Ir iods, the optimization atgorithm
}I samples the objective function directly, while in indirect
sethods the optimization algorithm is applied to an approxi-
aation of the N -dimensional teasible solution space. A trial
na fitted surface is computationally cheap if it replaces. ¢.g. [1. THEORETICAL OPTIMIZATION PROBILEM
finite clement analysis. In the classical Response Surface
dethodology (RSM) only one global polynomial is fitted. It
ecomes an optimization method it the following successive

In order to test the presented optimization scheme. a theoret-
ical optimization problem is detined by [2]:
ieps are performed uatil an accuracy criterion is met: sampling
1e feasibility space. constructing an approximation, finding

9

minimize f{x) = Z (=000 (L, 05)" = 3007 = 20.0,))

1e optimum of the approximation, constructing it new approx- =

mation closer to the optimum found. The Generalized RSM (1)
GRSM) applies the same methodology as the RSM. except of  subject to the constraints:

sing radial basis functions to construct the approximations | 1],

2. The presented new scheme does not have a well-defined G< <6 P 2)
. . . . . . =t 2 — e = -
ampling erid, it rather uses the sampling points of the evo-

onary  searc y construct ate an approximation. i - . .
tionary search to- construetand update an-approximation There are four local minima of approximately equal value.
one of them is the global minimum. Such an objective func-

tion resembles to a large extent typical objective functions found

nstead of constructing o highly accurate approximation in
Jeh sueeessive step, the approximation is gradually improved

uring the course of the evolutionary search. : : : : g
5 ¢ tionary search m engieering problems, which can be characterized as locally

smooth, but nonconvex.
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(a)
Fig. 2. (a) Multiquadric approximation based on a) full 3N
instead [1]. The GRSM uses approximations of the objective
function at any point z, of the form:

I \ \—\ Iaah R {2
JiL;) — i ["1”\1|""Iv‘l\l/ [
=l

with “; the anpt

he approximation cocfticients, M the number of exper-
imcnls and a possible radial basis function h(ljz — z,|])

). here
chosen to be:
Y @ — ;]| + s (4)

he shift factor s is a parameter defining the curvature of the

. - H ate 7 1 a . ST RPN
yproximated N-dimensional surface.
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Alotto ef al. proposes in [2] a statistical method (Bootstrap-
ping) to defines in a near optimal way. Experiments have shown
that choosings smaller than the average spacing of the sample
points is sufficient for most applications. If one substitutes the
interpolation condition f(x;) = »; in (3), the matrix cquation
for the unique coctficients ¢; is obtained:

e =1y (5
with the coefficients of the matrix //,;; = h{|le; — a])). The

matrix F/ is a full matrix with all diagonal clements equal to
zero. As long as the number of sample points is relatively small
(up to a few hundred points) and singularitics due to duplicate
points are avoided, this system can be solved by methods with
a full pivoting scheme. The advantage of the multiquadrics ap-
proximation of nonconvex functions arises with higher factorial
designs when using Design of Experiment (Fig. 2) or by accu-
mulating the sample points in successive zooming steps. More
detail of the original curve is present in the approximation. how-
ever at the expense of significantly more sample points.

IV. DIFFERENTIAL EVOLUTION STRATEGY

Differential evolution (DE)Y [3], [4] is a rather recent approach
for the treatment of real-valued nonconvex optimization prob-
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(9 samples) and (b) full 5™ -factorial €25 samples) of the analytical test function {2},

lems. As is typical for stochastic scarch algorithms. differential

evolution does not require any prior knowledge of the variable

c.norofthe ¢

SPe

vatives of the objective functions toward the

design variables. This algorithm is very simple. requiring only
two control parameters and is inherently parallel. Differential
evolution is a seif-adaptive evoiution scheme (@5A). Consider
tor of design variables x:

o= (..

i
TN o) (6)
In the initial step, a population of size A of randomly chosen
designs x; is constructed in such a way, that the initial popu-
lation covers the entire parameter space uniformly. Practically,
lhi\‘ could be achiceved by defining an inttial step fength of uulgl

variations & being randomly applied to a given start design @
I T TRt 7
= Eg e Og A2 by st T (7

with i = (DA 7 = (1N and the randomly chosen s, €

[0, 1]. During the optimization, DE generates new parameter
veetors by adding the weighted difference between a defined
number of randomly selected members of the previous popula-
tion to another member. In its basic strategy. this is the difference
of two vectors added to a third sne:

(ki1 (h) (h) A
N S S (.’n,_2 T ). (&

for i = F(1)Awith k the generation index. 7y . 1y € (1. AL
randomly chosen and mutually different and o € R > 0.
To increase diversity in the population, crossover is introduced,
leading to a new parameter vector ol the form:

(b1
fr,:;tli for 7 = <u> A <,, + ]) . <,, N - |>‘\.
, '(”l; _)/ for all other 7 = [1. N]

(9)
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‘.3, Convergence of the absolute error of the best trial per iteration using
ferential evolution (DE/best/I-strategy with A = 10, o
0

= 0.5 and p., =

The brackets () ydenote the modulo function with modulus
V. The index » is a randomly chosen integer from the interval
1. N]. L defines the number of parameters which are to be ex-
hanged and is taken from the interval [ V] L is chosen |
weh o way, that the probability (1. 2 1) = (p-)
with the crossover probability p- € [0, 1]. The new parameter
ector iy,
siolutes one of tlk constraints, this parameter vector is rejected

- The selection process has now

is checked for violation of any constraints. If it

E._
=

‘lmlLlFll\ to 4 tournament selection process. I this resulting de-
function than
, the new desien replaces the old one in the

sign vector vuldx .1 better value of the objective
ts predecessor i
soputation. 1 not, the old vector is retained. Several variants
af this algorithm can be defined, depending on the choice of the
vector to be perturbed. the number and choice of parameter vec-
wrs considered for the computation of the difference vector and
the crossover method [4]. A good choice for technical problems
iy a strategy that increases the greediness of the algorithm by
wsing the best parameter vector from the previous population:

'Ui‘,’;“ D= ,,H oot (J;‘,,/I) — :1:(,,6)> . (10)

The [.-norm of the difference vector between each popula-
fion member and its predecessor is tuken as the stopping crite-
rion. The experiments conducted in the scope of this work have
indicated that the (DE/best/ 1 )-strategy defined by (10) is favored
formost technical problems |5]. The two remaining strategy pa-
rameters can be chosen as o = 0.5 and ~ = 0.9,
the population size has been found to be less critical than in other
#8A schemes. A minimum of A > 15 should be chosen always
iV > 2. However, problems with up to 25 parameters have
heen successtully solved with population sizes between 30-40
5. [8]. The results of applying DE to the test problem (1), (2)
are presented in Fig. 3.

The strategy using A = 10 is successtul

Theinfluence of
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Fig. 4. Flowchart of the basic steps of the new method.

The basic idea 01 the new optimization method is 1o com-

‘eatures of both methods to reduce the

ovuall mization time. The

ptir asic steps of this novel scheme
are (Fig. )
l) Start an evolution strategy optimization using the objec-
tive function (direct \‘C‘llth iter atlon).

M (Tt
~ ) LU

aftereach

“
3

s approximat on [(x) ¢
iteration, including only points within a defined radius
from the active optimum. This radius is a function of the
active step length, ensuring an automatic contraction of
the active approximation space.

Compute the next evolutionary iteration using the objec-
tive function. but determine the predicted value from the

approximation ['(x) as well.

(98}

4) Record each poim within o maximal radius A - ¢
ret an updated approximation

t m and const
(2). I more than a defined ratio of predicted experi-

ments are e accepted during an iteration. go to step 5. oth-
erwise return to step 3.
5) Start a new evolutionary iteration, brt now using the ap-
proximation function [’(z) only (irdirect scarch itera-
tion).
Depending on the acceptance ratio d2termined in step 4,
continue an adaptive number of evolutionary iterations
using the approximation [(x} only.
7) Stop if the stopping criterion is fulfilled. if not return to
step 3 and start the direct search aga.n.

6

Three levels of adaptivity determine the algorithm:

1) The contraction or zooming of the tpproximated region
is adaptive to the progress of the optimization by consid-
ering a search space with a maximum radius of / s The
tactor & is empirically chosen as:

b= byla) - 1020 (rn

with « the step length factor of the evolution stralegy.

)

The acceptance of the approximation check is determined
hased on the variance of the objective function value of
the iteration underlying the active approximation:

i

mo Lo \
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Fig. 5. Typical convergence of the crror using the proposcd novel method.

with me = 1(1)A, A the population size of the evolutionary
search.
3) The number of indircct search iterations only depends on
.

active approximation. A higher
larger number of iterations on
f'(x). Tests have yield the following determination of the

number of indirect search iterations 1,

e
acceptance ratio allows a

(13)

with 1, the number of a

The contraction of the approximation region is primarily nec-
essary to reduce the number of unknowns in the matrix equation
(5). Furthermore. when the evolutionary algorithm returns from
an indirect search iteration, the selection and mutation generates
new population members entirely based on members originating
from an approximated function. Due to the approximation error,
the approximated function might return lower values then the
global minimum of the real objective function. The greedy cri-
teria inherent to all evolutionary algorithms could cause these
approximated results to survive. To prevent this development,
all population members of the last approximated iterations must
be mortal within the first direct sampling iteration. This causes
the new method to require slightly more steps than the classical
DE in order to converge toward the optimum. However, a large
number of sleps are taken on the computationally inexpensive
approximation surface.

The performance of the scheme is demonstrated on a test ex-
ample (Fig. 5). Using the same DE-strategy settings as for the
dircet approach, only 43% of the direct objective function eval-
uations are required (Figs. 3, 5). A remarkable featurc of the
proposed algorithm is that the efficiency depends on the curva-

ture of the objective function. Tests with simple second order

feasible surfaces have shown reductions of objective function
calls of up to 80%.
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Fig. 6. Visualizations of the updated approximations after (a) 2 and (b) 4

iterations of the differential evolution algorithm (A = 1 with the active

search region indicated {8].

Further studies are required to increase the robustness of the
algorithm by finding better writeria for the adaptivity of the al-
gorithm. Some possible treatments of constraints have been out-
lined for the GRSM by Ebner {71, So far, the new mcthod per-
forms with good results only for low dimensional optimization
problems. This has been reported for the GRSM as well and re-
mains an active rescarch topic {71.

V1. CONCLUSIONS

A new optimization scheme has been introduced, featuring
an adaptive coupling of the differential evolution strategy and
multiquadric function approximation. A remarkable reduction
of computationally expensive objective function calls is the re-
cult. The three levels of adaplivity provide control over progress
dependent accuracy and conmputationai expense ol the entire ap-
proach.
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