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Abstract|An optimization of radial active magnetic bear-

ings is presented in the paper. The radial bearing is numer-

ically optimized, using Di�erential Evolution { a stochastic

direct search algorithm. The nonlinear solution of the mag-

netic vector potential is determined, using the 2D �nite el-

ement method. The force is calculated by Maxwell's stress

tensor method. The parameters of the optimized and non

optimized bearing are compared. The force, the current

gain, and the position sti�ness are given as functions of the

control current and rotor displacement.
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I. Introduction

A
CTIVELY controlled magnetic bearing system is an
indispensable element when we have to satisfy the

machine{tool industry's demand for high-speed, high-
precision machining. A typical system of Active Magnetic
Bearings (AMBs) [1] consists of controlled electromagnets,
used to control �ve degrees of freedom (DOFs), and a driv-
ing motor that controls the sixth DOF. Two pairs of radial
bearings that control four DOFs are placed at each rotor
end. The �fth DOF is controlled by a pair of axial bearings.

Two electromagnets on the opposite sides of the ferro-
magnetic rotor pull the rotor in opposite directions. The
total force acting on the rotor is equal to the vector sum
of forces of all electromagnets. Such system of electromag-
nets and ferromagnetic rotor is open loop unstable. It is
stabilized by corresponding current and position control
assuring the contact{less suspension of the rotor.

The total force of two electromagnets is nonlinear func-
tion of the current, the rotor position and magnetization
of the iron. The nonlinear current{force dependence is ef-
�ciently linearized by bias and control current, while the
position{force dependence and iron magnetization remain
nonlinear. The control design is often based on a linearized
dynamic model. However, the stability and the robustness
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of the controlled AMB system can be eÆciently tested with
the analysis of the linearized model in the entire operation
range. The Finite Element Method (FEM) based calcula-
tions may be very helpful for this purpose [2], [3].
The design of AMBs is expected to satisfy the static

and dynamic requirements in the best possible way. It
can be found either by experience and trials or by apply-
ing numerical optimization methods. AMBs are nonlinear
systems. The dependency of the objective function and
its gradients from the design parameters is unknown. For
the optimization of such constrained, nonlinear electro{
mechanical problems, the use of stochastic search meth-
ods in combination with the FEM{based analysis is rec-
ommendable [4], [5].
In this paper the numerical optimization of radial AMBs

using Di�erential Evolution (DE) [6] { a direct stochastic
search algorithm { is presented. The aim is to achieve max-
imum force at a minimum mass of the entire construction.
The objective function is evaluated by FEM{based 2D cal-
culations. It includes the determination of the nonlinear
solution of the magnetic vector potential and the determi-
nation of force by Maxwell's stress tensor method. The
optimization has been performed in a special environment
tuned for FEM{based numerical optimizations [7]. The lin-
earized equations are applied to compare the performance
of designs prior to and after the optimization.

II. Radial active magnetic bearing
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Fig. 1. An electromagnet a), a pair of electromagnets b).

The voltage balance in the coil of an electromagnet,
shown in Fig. 1.a), is described by (1):

u = Ri+ L
di

dt
+ ku

dx

dt
(1)

where u is the voltage, i the current, R the Ohmic resis-
tance, L the inductance, ku the coeÆcient of induced volt-



age, and dx

dt
the derivative of the rotor displacement in the

axis x. The current through the coil of the electromagnet
generates the attractive force. It attracts the ferromagnetic
rotor to the core of the electromagnet. In general, pairs of
electromagnets are used in magnetic bearings as presented
in Fig. 1.b). The force of a pair of electromagnets in the
same magnetic bearing axis depends on the 
ux densities
in the air gaps of both electromagnets (2):

F = k
B
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where k is the geometric factor (for an eight{pole bearing
k = cos(�=8)), B1 and B2 are the 
ux densities in the
air gap of the �rst and second electromagnet on the same
bearing axis, �0 is the permeability of vacuum, and A is
the area of one pole. The 
ux densities B1 and B2 are
caused by the currents i1 and i2. If the nonlinearity of iron
is neglected (2) can be transformed to (3):

F =
k�0(Ni1)

2

4(Æ � x)2
A�

k�0(Ni2)
2

4(Æ + x)2
A (3)

where Ni1 and Ni2 are the magnetomotive forces of elec-
tromagnets on the same bearing axis that generate the at-
traction forces acting on the rotor in opposite directions,
and Æ is the air gap. Let us introduce the bias current ib
and the control current ip. The same bias current ib is
supplied into the coils of both electromagnets. Force con-
trol is done by adding a control current ip into the coil of
one electromagnet and subtracting it in the coil of other
one (4):

i1 = ib + ip and i2 = ib � ip (4)

where ip � ib. The relation between the control current and
the resultant force is obtained by inserting expressions (4)
into (3):

F =
k�0N

2(ib + ip)
2

4(Æ � x)2
A�

k�0N
2(ib � ip)

2

4(Æ + x)2
A (5)

Equation (6) is obtained by rearranging (5). It expresses
the linear dependence between resultant force and control
current ip.

F =
k�0AN

2
ib

2(Æ � x)2
ip (6)

Equation (5) can be linearized about the operating point
x = x0, ip = ip0. The so obtained equation (7) is valid
exclusively close about the point of linearization. The ex-
pression F (x; ip) represents the functional dependence of
the force on the rotor displacement x and the control cur-
rent ip, while the expression F (x0; ip0) denotes the force in
the operating point x0, ip0.

F (x; ip) = F (x0; ip0) + ki(ip � ip0) + kx(x� x0) (7)

In the point x = x0, ip = ip0 the current gain ki is de�ned
by (8), and the position sti�ness kx is given by (9):

ki :=
@F (x; ip)

@ip
for x = x0; ip = ipo (8)

kx := �

@F (x; ip)

@x
for x = x0; ip = ipo (9)

For x = 0 and ip = 0 we get:

ki = k�0N
2
A
ib

Æ2
and kx = �k�0N

2
A
i
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The motion of the mass point with the mass m between
two electromagnets located in the same axis of an AMB is
described by (10).

F = m
d
2
x

dt2
(10)

One axis of the radial magnetic bearing is mathematically
described by the pair of voltage equations (1), by the force
equation (2) and the equation of motion (10). In the vicin-
ity of the operating point the force equation (2) can be
replaced by the linearized expression (7).
Further on, the procedure for optimizing radial magnetic

bearing is described. Included is the comparison of forces
F , current gains ki and the position sti�nesses kx of the op-
timized and non{optimized bearing calculated for di�erent
rotor displacements x = x0 and control currents ip = ip0.

III. Optimization

The optimization of the radial magnetic bearing, carried
out in a special environment tuned for FEM{based numer-
ical optimizations [7], is brie
y described in the following
six steps:
� Step 1: The geometry of the bearing is described para-
metrically and the initial parameter values are determined
by a �rst analytical design. The bearing geometry parame-
ters are: the stator yoke sy, the rotor yoke ry, the leg width
lw (all shown in Fig. 2.a)) and the bearing axial length l.
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Fig. 2. The bearing geometry a), coils and currents b).

� Step 2: The new parameter values are determined by
DE [6]. The electromagnets in the y axis are supplied by
the current ib, while the electromagnets in the x axis are
supplied by the currents ib + ip and ib � ip at ip = ib, as
shown in Fig. 2.b).
� Step 3: The bearing geometry, the material, the current
densities and the boundary conditions are de�ned. The
procedure continues with Step 2 if the parameters of the
bearing are outside the geometrical constraints.
� Step 4: First, the mesh is generated. Then the non-
linear solution of the magnetic vector potential is de-
termined, using the conjugate gradient algorithm and



Newton-Raphson's algorithm. The 2D problem is de-
scribed by (11)

r � (�rA) = �j (11)

where A is the magnetic vector potential, � is the magnetic
reluctivity, j is the applied current density, and r is the
Laplace operator. The whole procedure consists of the cal-
culation of the magnetic vector potential, the analysis of
errors, mesh re�nement, and the repeated potential calcu-
lation.
� Step 5: The force is calculated by Maxwell's stress ten-
sor method (12):

F =

I
S

� dS =

I
S

�
1

�0
(B � n)B �

1

2�0
B

2
n

�
dS (12)

where � is the Maxwell's stress tensor, n is the unity normal
vector of the integration surface S, B is the magnetic �eld
density, and �0 is the permeability of vacuum. In the 2D
case, the integration path is a contour. The closed contour
along the middle layer of the �ve{layer air gap mesh is used
as an integration path.
� Step 6: The objective function and the penalties are
found empirically. Their values are determined from Step

3 through Step 5. The objective function is given by (13).

q =
mF0

Fm0

+ p1 + p2 (13)

wherem0 and F0 are the initial mass and the initial force of
the bearing. m and F are the mass and the force for actual
parameter values. p1 and p2 denote the penalties (14).

p1 =
F0

F
if F < F0

p2 =
m

m0

if m > m0

(14)

The value of the objective function is minimized in the opti-
mization procedure. The optimization proceeds with Step

2 until a minimal parameter variation step or a maximal
number of evolutionary iterations is reached.

IV. Parameters calculation

The values of the force F (x0; ip0), the current gain ki

and the position sti�ness kx, which appear in the linearized
force equation (7), have been determined for the optimized
and for the non{optimized bearing. For this purpose the
parametric descriptions of the bearing geometry and of the
magnetic excitation were used. The FEM{based 2D calcu-
lations were performed for di�erent values of rotor displace-
ment and control current, as described in Step 3 through
Step 5. For each mentioned operating point x = x0,
ip = ip0, the current gain ki has been calculated as the
quotient of the force di�erence and the control current dif-
ference, and the position sti�ness kx has been calculated as
the quotient of the force di�erence and the rotor displace-
ment di�erence.

Special attention was focused on the calculation of force.
A �ve{layer mesh was generated in the air gap. The closed

contour along the middle air gap mesh layer, for all calcu-
lations at the same position with respect to the stator, was
used as an integration path. The force was determined by
Maxwell's stress tensor method.
The obtained results were checked in some points by

FEM{based 2D calculations which were carried out by
a commercial software package [8]. The forces were de-
termined by the Virtual Work method. The di�erences
between the forces calculated by Maxwell's stress tensor
method and the Virtual Work method were smaller than
one percent in all discussed cases.

V. Results

The data of the non{optimized and of the optimized
bearing are given in Table I. The optimization has been
performed in the operating point x = 0, y = 0, ip = ib =
5 A. All design parameters are rounded o� to one tenth of
a millimeter. The optimization data are given in Table II
while the bearing geometry is shown in Fig. 2.

TABLE I

Data of the non{optimized and the optimized bearing

parameter non{optimized optimized

stator yoke sy [mm] 8.5 7.2
rotor yoke ry [mm] 9.0 7.8
leg width lw [mm] 10.0 9.0
length of bearing l [mm] 53.0 56.3
mass of bearing m [kg] 2.691 2.688
force F [N] 580.01 629.74
objective function q 1 0.92

TABLE II

The optimization data

Optimization method Di�erential Evolution

Number of parameters 4
Population size 20
Number of iterations 60

The objective function and the step{length ([6],[7]) dur-
ing the optimization are shown in Fig. 3. The minimal
value of the objective function has been reached after 43
iterations.
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Fig. 3. The objective function and the step{length

The values of the force F , the current gain ki and the
position sti�ness kx (equation (7)) calculated for the op-
timized and for the non{optimized bearing by Step 3
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Fig. 4. Force F , current gain ki and position sti�ness kx calculated in di�erent operating points ip = ip0, x = x0;
The optimized bearing: a) force F , b) current gain ki, c) position sti�ness kx;
The non{optimized bearing: d) force F , e) current gain ki, f) position sti�ness kx;

through Step 5 are given for di�erent values of the control
current ip = ip0 and rotor displacement x = x0 in Fig. 4.

The optimization results, given in Table I and by FEM
calculated parameters of the optimized and of the non{
optimized radial magnetic bearing compared in Fig. 4,
show that the optimization has increased the maximal force
of the radial bearing for more than 8.5 %, while the mass
of the bearing has remained unchanged at a negligible in-
crease of nonlinearities of the characteristics. The FEM
calculations make it possible to determine the characteris-
tics of the bearing model, and thereby to evaluate the dy-
namic properties and control algorithm of the entire AMBs
system prior the prototype is made.

VI. Conclusion

The paper describes the optimization of a radial AMB
and the determination of the bearing model parameters lin-
earized about various operation points. It has been shown
that the use of optimization methods in combination with
the FEM can increase the maximum bearing force at an
unchanged mass and a negligible increase of magnetic non-
linearities. By FEM{based 2D calculations the values of
the force, position sti�ness and current gain in di�erent op-
erating points of the optimized and non{optimized bearing
have been determined. These results make it possible to
evaluate the robustness of the control algorithm. Moreover,
they can be approximated by a continuous function, which

is further used for the linearization on the entire surface,
and altogether applied in the synthesis of the nonlinear
bearing control.
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