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Abstract: Optimum design is defined as a design that is the best 
possible solution. All design variables are determined simultaneously 
to satisfy a set of constraints and optimize a set of objectives. Two 
parametric FE pre-processors and a general purpose optimization 
environment are presented. Due to its open architecture,  finite 
element as well as analytical models can be implemented. Stochastic 
algorithms usually require substantially more function evaluations 
compared to gradient methods, which increases the elapsed 
computation time. However, the stochastic algorithms feature 
unmatched simplicity in the setup of an optimization model. A 
parallel implementation of the Evolution Strategy is presented, which 
offers one way to reduce the elapsed computation time. An 
optimization task is discussed to outline the general application range 
of the developed tools. The optimum design of an inductor used in a 
traction drive system is described in detail. Special attention is paid to 
the formulation of the quality function. 
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I. INTRODUCTION 
 
The development and design of electromagnetic devices 

reflects a complex process. Originating from an initial idea, the 
construction runs through different phases. This procedure is 
terminated when a final concept is selected and considered to 
be optimized, subject to various targets and constraints. As a  
whole, the task of the design engineer is to find solutions for 
technical problems. On the way to the physical and technical 
product, certain aspects have to be considered. Technological 
and material depending questions, cost effectiveness and 
ecological constraints have to be taken into consideration. A 
cut-set of the mentioned boundary conditions controls the 
feasibility of the final design. The design process strongly 
depends on the experience of the engineer and reflects an 
optimization procedure with often contradicting targets. 
Therefore, the necessity of a systematic design with 
engineering tools is obvious. In this paper, solution strategies 

using modern numerical methods to accelerate the 
development and to ensure a high standard technical product in 
an overall design process are discussed.  

Simulation and the numerical optimization of electro-
magnetic devices is one key to enhance product quality and 
manufacturing efficiency. Each device has different 
specifications and thus the goal of the optimization is strongly 
device dependent. To obtain an optimization tool which is of 
general applicability, allowing a high number of independent 
design parameters as well as a simple consideration of  
constraints, stochastic optimization methods are selected. 
Stochastic search algorithms as Evolution Strategy, Simulated 
Annealing and Genetic Algorithms offer all these 
specifications. The disadvantage of a larger number of quality 
function evaluations compared to deterministic optimization 
algorithms is compensated by the simplicity of the 
implementation of constraints and multiple goal quality 
functions [1]-[5], as well as the inherent parallelism of these 
methods. One main objective of the authors is the amplification 
of the advantages of the selected optimization methods by 
implementing them into a general purpose tool, which unifies 
the set-up, test and execution of optimization tasks.  

To predict the system behavior of an electromagnetic device 
and thus to evaluate its quality, field analysis tools are in 
common use. Analytical, semi analytical [2] and numerical 
methods can be used. The appropriate choice of an field 
analysis tool is problem dependent [1]. To simulate 
electromagnetic fields, the finite element analysis has proven to 
be a reliable tool for the evaluation of a new design. 
Combining stochastic optimization algorithms and field 
simulation techniques into an optimization environment allows 
the creation of user friendly design tool [1]. Here, a parametric 
optimization environment is developed to automate the design 
of electrotechnical devices, allowing the use of analytical as 
well as semi analytical and numerical methods for the 
evaluation of the quality function. The optimum design of an 
inductor used in a traction drive system is described in detail to 
demonstrate the methodology and practical implementation of 
the methods used. 

 
 

II. PARAMETRIC PRE-PROCESSOR 
 

A key requirement for the combination of numerical field 
analysis tools and optimization algorithms is a pre-processor 
providing the possibility to parametrize 2D or 3D mathematical 
models. This includes, apart from the parametrization of the 
geometry, the parametric definition of material properties, 
problem defining data and post-processing algorithms. In a first 

 



 

 

step MATLAB has been chosen as the environment to 
implement an interactive graphical pre-processor (Fig. 1).  

This pre-processor is linked to the professional FE-package 
MagNet. Starting from a sketch of the device geometry, the 
entire analysis procedure for the model is defined. The 
resulting parametrized sketch file contains all data to describe 
the single steps of the field analysis, constraints checking and 
the recommended post-processing algorithms (evaluation of the 
quality function). Once the analysis procedure of the field 
model is defined, simple parameter variation can be performed. 
From within MATLAB, the full procedure is controlled by 
calling external programs, such as the mesh generator, equation 
system solver and post-processor routines of MagNet. The 
open structure allows the combination of MagNet with 
different analysis tools. 

In a second step, a stand-alone, fully interactive and 
parametrized 2D FE-pre-processor has been developed, which 
is embedding different solvers and post-processing tools that 
have been developed in our research unit. However, this pre-
processor is linked to the same optimizer as the pre-processor 
that is implemented in MATLAB. This 2D pre-processor 
includes all features that are expected from a classical FE pre-
processor, but additionally provides all tools to set up, test and 
control optimization tasks, such as: 

 
•   the parametric definition of problem types, materials, 

excitations and boundary conditions, 
•   the definition and test routines of analysis procedures 

including different types of solvers and post-processing 
routines (Several different procedures can be defined with 
one model.), 

•   the definition of constraints checks and normalizing 
factors for the design parameters, 

•   the setup and execution of parameter variations using 
beforehand defined analysis procedures, 

•   the storage of the model and the procedure in a 
symbolic format, 

•   the automatic preparation of optimization tasks for a 
parallel environment using PVM (Parallel Virtual Machine, 
a software that allows the setup of a parallel environment 
with several computers via a network) [7]. 

 
The latter involves the minimization of the necessary data 
exchange between the different network nodes inside the 
virtual parallel environment. 

 
 

III. OPTIMIZATION ENVIRONMENT 
 
The developed optimization environment provides the 

following features: 
 

• Different optimization algorithms. 
• Monitoring of the optimization process at run-time. 
• Defined stop and restart procedures in case of problems 

during execution. 
• Handling parametrized procedures provided by the 

parametric pre-processor. 
• Open architecture supporting the optimization of non-FE 

models. 
• Implementation of additional optimization algorithms 

without changing the whole structure of  the environment. 
 

Four stochastic optimization algorithms have been 
implemented into the optimization environment: Evolution 
Strategy, Simulated Annealing,  a combination of both and a 
variant of Simulated Annealing. Details can be found in [2]. 
Typical for stochastic optimization algorithms is the generation 
of independent sets of parameters within one iteration (Fig. 3). 

The optimizer itself is a stand-alone program, which can 
operate in two modes: 
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Fig. 1. Structure of the parametric pre-processor implemented in MATLAB. 

 

 

 
 

Fig. 3.  Simplified flow chart of the optimization process using the external 
optimizer (OPTI). (The question marks stand for the constraints checking.) 



 

 

constraints check are compiled and linked into one 
executable. The function evaluations are sequential, a 
new set of parameters is created after the previous is 
analyzed. 

 
2.   External optimization (Fig. 3): the optimizer reads the 

status and quality of the previous function evaluation at 
startup, and exports a new set of parameters. No 
information about the type of analysis procedure is given 
to the optimizer.  

 
This second mode represents the main strength of this 

optimizer: as no information about the analysis procedure is 
required for the optimization algorithm itself. This executable 
can be called from different programs or can bee used even in 
batch mode. There is no need to re-code the optimizer for a 
new optimization task. This results in a minimum effort to set 
up a new, probably totally different optimization problem. This 
second mode is also used in the parallel implementation of the 
optimization. The developed optimization environment in 
MATLAB already operates on a higher level (Fig. 4). It calls the 
optimizer in external mode to generate the new sets of 
parameters. All the other features allow the fast setup of a new 
optimization for the different possible analysis procedures: 

 
• MATLAB based FE-pre-processor linked with MagNet,  
• the models defined by the stand-alone pre-processor, 
• analytical models (MATLAB macro files) 
• or semi-analytical analysis (external programs). 
 
 Other functions assist the choice of the strategy parameters 

for the optimization algorithm itself, as well as the definition of 
the set of start parameters and the stop criteria. In case of an 
optimization of a finite element model, the parametrized sketch 
file includes all information required to start the optimization. 
The environment controls the external process calls for the FE-
analysis. Whereas the parametric pre-processor is an 
interactive graphical tool, the optimization process is entirely 

automated and can operate as a background process. The 
optimization can be stopped at any time and restarted from a 
previous position. This feature has been found very useful in a 
network environment, when a long lasting optimization should 
be stopped to allow maintaining the network. The actual 
progress of the optimization can be monitored graphically. 
Depending on the optimization algorithm, key data may be 
visualized together with the variation of all parameters.  

 
 

IV. PARALLEL IMPLEMENTATION OF THE 
EVOLUTION STRATEGY ALGORITHM 

 
The optimization, as an essential part of the design 

procedure, must always be evaluated regarding its cost 
effectiveness. Apart from the costs for appropriate software 
and hardware, there are two main cost factors:  

 
• Engineering man hours have to be paid for the time of 

the interactive definition and testing of the optimization 
problem, and 

• the overall computation time that the optimization needs 
to find the optimum (machine hours). 

 
It is widely discussed, that one of the mayor advantages of 

stochastic algorithms is their robustness, ease of use and 
general application range. The setup and testing of new 
optimization problem (quality function, implementation of 
constraints) requires much less effort compared to 
deterministic algorithms. This directly influences the first cost 
factor. A main argument against the widespread use of 
stochastic search algorithms is its huge number of necessary 
function evaluations, which increases the elapsed computation 
time. This argument, however, will not hold when the cost 
effectiveness of the optimization is taken into account, as the 
higher number of function evaluations will only increase the 
second cost factor, which is negligible against the costs of 
engineering personal. 

The rapid enhancement of computer power, but also the 
availability of new computer architectures (parallel machines)  
will help to reduce the total computation time in the future. An 
implementation using PVM is described here (Fig. 5). 

PVM provides the software tools and libraries that allow 
setting up a parallel environment (parallel virtual machine) in 
an already installed network of heterogeneous computers. From 
a master process, residing on one of the machines, slave 
processes can be spawn to the different machines. PVM itself 
provides all the tools for the control and the communication of 
the single parallel running processes. The actual parallelization 
of the algorithm, but especially the amount of data exchange 
between the processes influences the possible down-scaling of 
the elapsed computation time. Network and machine load due 
to third party processes play an important role as well.  

As shown in Fig. 3, Evolution Strategy is perfectly suited 
for parallelization, as all generated sets of design parameters in 
one iteration are independent. Fig. 5 outlines the realized 
implementation of an Evolution Strategy algorithm. The 
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Fig. 4. Structure of the optimization environment.



 

 

defined procedures for the FE analysis together with the 
parametric description of the model itself are distributed to the 
local computers of the parallel environment. Those symbolic 
descriptions reside local on those machines for the whole 
optimization process. The execution of the defined procedures 
for the function evaluation involves no graphics, and can 
therefore be performed in the background. 

During the optimization, the data exchange between the 
host machine and the slave machines is limited to the updated 
values of the parameters and the return of the quality and status 
of the single function evaluation to the master process (the 
optimization controller). The impact of third party network 
traffic is therefore reduced to a minimum.  

Dynamic load balancing is very important in a network, 
which consists of heterogeneous machines (in this case several 
HP 715, 730 and C160). The parameter pool is filled with n-
sets of parameters, which represent the n-design candidates to 
be evaluated in one iteration of the optimization process. A 
new set can only be generated when all values of the single 
qualities of the present iteration are obtained. These processes 
have to be spawn onto the different machines. Towards the end 
of each iteration, a situation may occur, were a slower machine 
could start a function evaluation, which could take longer than 
the faster machines would need to evaluate the remaining 
parameter sets in the pool. This would increase the elapsed 
optimization time unnecessarily. The implementation of 
dynamic load balancing in the master program allows an 
effective use of  machines with different performance 
characteristics or with temporarily reduced performance due to 
third party processes (processes of other users on the local 
machines). The impact of the latter can not be neglected in a 
real life network situation.  

Two load balancing schemes are combined. As the 
theoretical performance of the heterogeneous computers in the 
network is known, the optimization procedure is started with 
static load balancing. New function evaluations are generally 

started on the different hosts when the previous process on 
these hosts have been finished. Before statistically sufficient 
data about the different computation times per machine are 
collected, the priority of the machines to receive a new process 
depends on the their theoretical performance. The computation 
times of all single function evaluations are recorded during the 
process of the optimization. The actual performance due to 
third party network traffic and processes can now be taken into 
account to ensure the optimal usage of the different machines 
with regard to a minimized elapsed optimization time. 

The achievable down-scaling of the elapsed computation 
time for a complete optimization depends largely on the 
performance and the load of the different machines  
incorporated into the parallel environment. Tests have shown 
that in a setup with equal machines (HP 9000/715), the down-
scaling is almost linearly depending on the number of machines 
included. This can only be achieved due to the minimized data 
exchange with the master process. The exchanged data 
packages are of the sizes of some bytes, whereas the FE data 
structures can reach several Mbytes during the evaluation of 
the quality function.  

 
 

V. OPTIMIZATION OF AN INDUCTOR - AN 
ANALYTICAL APPROACH 

 
As an example the design optimization of an inductor used 

in a traction drive system is chosen (Fig. 6). Apart from the 
desired electric and magnetic characteristics and properties of 
the inductor, a minimum weight is demanded. Here, the 
inductor must have an inductance L of 3 mH up to a maximum 
current of 1350 A.  

The current density J in the copper windings must not 
exceed 6 A/mm2. The maximum dimensions for the inductor 
are given geometrical constraints (Table I).  

 
TABLE I 

SET OF DESIGN PARAMETER AND CONSTRAINTS 
set of design parameters: constraints: 
b yoke width d+bw < 500 mm (depth) 
d yoke thickness 2*(b+bw) < 750 mm (width) 
bw window width 2*b+hw < 660 mm (height) 
hw window height g0 < hw/2 
g0 total air gap J < 6 A/mm2 
N number of turns Bmax < 1.5 T (no saturation) 
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Fig. 5. Parallel implementation of the Evolution Strategy algorithm using 
PVM. 
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Fig. 6. Geometry and design parameter of the inductor example. 



 

 

The total air gap is subdivided into multiple gaps with a 
length less than 1/6 of b and d respectively, to minimize the 
leakage flux. 1/6 is empirically chosen, following the fact that a 
higher number of small air gaps leads to less leakage flux then 
one large air gap. An (4/4, 20)-Evolution Strategy was chosen 
to tune the design parameters during the optimization [2]. 
Particular attention must be paid to the formulation of the 
quality function q. Two different formulations have been 
tested. Formulation (1) includes a penalty term in case the 
saturation constraint is violated: 
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Here, mi is the weight of the inductor, Lgiven is the specified 

inductance of 3 mH and Bi is the maximum flux density inside 
the iron parts. Index i indicates the quantities calculated from 
the actual set of design parameter. The set of parameter is 
rejected in the case geometrical constraints are violated and 
new sets of design variables are generated until they meet the 
constraints [2]. Formulation (2) features no penalty term for the 
violation of the saturation criterion. The set of parameters is 
rejected before the function evaluation if geometrical 
constraints are violated  The main difference to formulation (1) 
follows during the function evaluation. If the flux density 
values are too high, the parameter set is rejected and a new set 
is generated and analyzed. The quality function is simplified to: 

 

 (2) 

 
To maintain the desired value of the inductance, formulation 

(2) calculates the number of windings as a function of the given 
inductance. This second formulation reduces the search space 
for the optimization algorithm, and consequently inherits the 
possibility of not finding the global optimum. The optimization 
process for the inductor problem is started with an initial set of 
parameters violating the constraints. Fig. 7 and 8 show the 
change of step length and the rate of convergence during 
optimization process for the inductor using formulation (1).  

One of the first accepted parameter sets describes an 
inductor with a total weight of 650 kg (Fig. 9). Using the 
Evolution Strategy, the step length of the parameter variation is 
used as stopping criterion. After the optimization, the 
inductance is calculated to 3.001 mH and the flux density and 
the current density do not exceed the maximum values. 
Applying formulation (1), the final weight is 349 kg (Fig. 10). 

The optimal solution found using formulation (2) (Fig. 11) 
does not match the results obtained by formulation (1). The 

significance of an appropriate choice for the quality function is 
obvious. 

 
 

VI. CONCLUSION 
 
A parametrized environment for the optimization of 

electromagnetic devices has been developed. The emphasis 

 
Fig 7. Step length for the best set of parameters per iteration. 

 
 

 
Fig. 8. Quality versus iteration count during optimization 
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Fig. 9. Initial design of the inductor with a weight of 650 kg 
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Fig. 10. Optimal design of the inductor using formulation (1) 

 with a weight of 349 kg. 
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Fig. 11. Optimal inductor design using quality function (2)  

with a weight of 472 kg. 
 



 

 

was put on the development of a user friendly tool which is 
applicable to both, FE and analytical models. The optimization 
example of an inductor demonstrates the open architecture of 
the environment. The optimization environment will be 
extended in future, incorporating more optimization algorithms 
(e.g. Differential Evolution). Other central points in further 
research and already started activities are the automatic 
selection of the strategy parameters defining the optimization 
algorithm and the further parallelization of the procedures 
(evolution strategy migration schemes). 
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