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Abstract
In general, motion effects in a physical system are
described by a convection-diffusion equation. If this
equation is solved numerically by the Galerkin method,
an unstable and oscillating solution is observed at higher
speeds. A severely refined mesh can be used to avoid this
phenomenon, but computation time might then become
unacceptable. Moreover, since the exact solution of a high
speed motion problem is characterized by one or more
small and steep transitions, many nodes are located
outside these interesting zones. Here, a more elegant way
for solving convection-diffusion problems is presented.

1 Introduction
In electromagnetic problems, convection-diffusion
equations describe systems with moving bodies, such as
electrical motors or eddy current brakes. The two
dimensional quasi-static magnetic convection-diffusion
equation is given by [6]:
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where Az is the z-component of the magnetic vector
potential, V the electric scalar potential, ν

&

 the velocity
vector, rν the relative reluctivity, 0µ  the permeability of

air and σ the electrical conductivity. The second order
derivative with respect to the place, represents the
diffusion term. The convection term is given by the first
order derivative. When this equation is solved
numerically on a pre-determined mesh by the Galerkin
method, instabilities are found in the solution if the
convection term dominates over the diffusion term [1,3].
Equation (1) reveals that this happens when the ratio
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is too large. These oscillations do not have a physical
interpretation. They are purely numerical.

2 Numerical problem
Consider the linear eddy current brake in figure 1. The
iron rail moves to the right side. Only half of the model is
shown because the brake is symmetric. The magnetic
field, generated by the winding current, penetrates the rail
and induces eddy currents there, due to the relative
motion. The interaction between the magnetic field
generated by the eddy currents and the main magnetic
field generated by the winding current, causes a
redistribution of the field towards the direction of the
movement. Figure 2 shows a stable solution at relatively
low speed and an unstable solution, observed at higher
speeds.
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Figure 1: Configuration of a linear eddy current
brake.
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Figure 2: Galerkin solution, for (a)ν
&

= 2 m/s
and (b)ν
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= 150 m/s.



3 High speed solutions
For one dimensional problems, it is well known that
oscillations occur when the dimensionless Peclet number
is larger than one. The Peclet number is defined by [2,7]:
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where h is the characteristic mesh size. The permeability
and the conductivity are determined by the materials. This
implies that high speed problems are only solvable if very
small elements are used. In practice, oscillations occur
when the element size is relatively large compared to the
distance over which the transitions take place. The Peclet
number, as defined above, is only valid for one
dimensional problems. However, for two or three
dimensional problems, the same conclusion can be drawn.

To solve the motion problem at elevated velocities, and to
avoid a strongly refined mesh in the entire moving region,
the solution process is performed in two steps. In the first
step, the location of the transitions is determined on a
stable approximation for the solution. Therefore, two
approaches are possible. Either the Galerkin method or
the differential equation is altered. In the second step, the
Galerkin method is applied to a mesh that is only severely
refined in the transition zones.

3.1 Artificial diffusion

As numerical instabilities only occur in the solution when
the convection term is large when compared to the
diffusion term, it is sufficient to enlarge the contribution
of the diffusion term artificially, in order to avoid the
instabilities. Here, this is performed by increasing the
value of the reluctivity in the moving region. This is
equivalent to a reduction of the permeability. Reducing
the permeability on its turn reduces the effect of the eddy
currents and thus the interaction between the main field
and the eddy current field. Therefore, this technique is
called artificial diffusion (AD) [1,2,3].

Although the obtained  solution is a numerical
approximation for the solution of another differential
equation, it still can resemble the solution of the basic
equation. This is possible and feasible, because the main
effect of artificial diffusion is smoothing the transitions.
When the extra diffusion is higher, the difference with the
exact solution is larger.

3.2. Streamline methods

Artificial diffusion simply introduces diffusion where it is
required. The amount of diffusion depends on the material
characteristics, the element size and the velocity.
However, the method imposes the same diffusion in all
directions.  Artificial diffusion does not take advantage of
the known direction of motion.

Each convection-diffusion problem can be considered in
terms of its streamlines [4]. Streamlines are paths that
imaginary points would follow in the velocity field. It can
be shown that the transitions are steepest in the direction
of the streamlines. In the crosswind direction,
perpendicular to the streamlines, the transitions are
smooth. More recent techniques, such as streamline
diffusion (SD) and streamline upwind Petrov Galerkin
(SUPG) consider this phenomenon [1,2,3].

In streamline diffusion, a term that only introduces
diffusion in the direction of the streamlines, is added to
the differential equation. This technique assumes that no
smoothing is required in the crosswind direction. This
extra term has the form:
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Now, the diffusion factor δ is the parameter influencing
the stability of the solution. The new differential equation
is solved by the Galerkin method. In the same way as in
artificial diffusion, the numerical solution is an
approximation for another, but similar problem. However,
as diffusion is only introduced in the streamline direction,
the problem is less altered when compared to the artificial
diffusion approach.

SUPG does not change the differential equation. This
method is characterized by the use of other weighting
functions.  The weighting functions are formed by a sum
of a shape function and a function considering
information about the streamlines. These weighting
functions have the form:
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where N is a shape function. The first numerical solution
is already an approximation of the exact solution, because
no changes are made in the differential equation. The
upwind factor δ stabilizes the solution.

4 Implementation
Here, a practical implementation of artificial diffusion is
presented. The system matrix of a convection-diffusion
problem is the sum of a diffusion matrix K  and a motion
matrix M . The contribution of the motion term on each
element of the system matrix is either positive or
negative. It has been observed that the solution remains
stable, as long as the sign of all the elements in the system
matrix K+M  and the diffusion K  matrix are equal.
Therefore, to obtain a stable solution for a high speed
problem, the entire diffusion matrix is multiplied by a
factor f ( f  > 1), until the signs of all elements of the
matrix f K+M are equal to the signs of K . This scheme is
an artificial diffusion scheme, because every element of
the diffusion matrix is proportional to the reluctivity of
the material [5]. To improve the method, the
multiplication is performed per finite element. The



problem is minimally altered in this case. This yields the
following implementation scheme:

• Calculate the element diffusion matrix K (e).
• Calculate the element motion matrix M (e).
• Calculate the value f (e), such that
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• Replace the element diffusion matrix K (e) by f (e) K (e).

When the dominance of the convection term is not
troublesome, the artificial diffusion solution on a
relatively coarse initial mesh more or less resembles the
exact solution. This is illustrated in figure 3, where the
Galerkin solution on a severely refined mesh is compared
to the artificial diffusion solution on an initial mesh.

(a)

(b)

Figure 3: Comparison between the numerical
solutions, for a velocity of 20 m/s, (a)
by the Galerkin method on a very fine
mesh (14423 elements) and (b) by the
AD method on a coarse mesh
(2046 elements).

5 Adaptive mesh refinement
Artificial diffusion, streamline diffusion and SUPG are
used to find a stable approximation for high speed
problems on a mesh with elements that are larger than the
characteristic size of the transitions. As the artificial or
streamline diffusion solution is an approximate solution
for another differential equation, it introduces an extra
error. This error is reduced by refining the mesh in the
transition zones, which implies the use of an error
estimator based on the slope of the solution. This slope is
calculated as follows:

• Suppose that the equation of the solution in a linear
triangular finite element is given by:
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• When the solution in node (xi ,yi) of the triangle is
given by Ai, the coefficients a,b and c are found by:
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• The unit vector u
&

, perpendicular to the solution in
the element is then given by:
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• The slope of the solution in the element is high if the
z-component of this unit vector is small.

A mesh refinement procedure, based on artificial
diffusion, is given in figure 4. The stable first solution is
used to detect the regions with the largest decay of the
magnetic vector potential in the moving regions. Mesh
refinement is only performed for the elements where the
slope of the solution is the highest.

Generate an initial mesh.

Refine only the transition zones.

Search for the transition zones.

Solve the system of equations.

For the moving region, calculate AD elementwise.

Calculate AD elementwise in the transition zones.
(No AD outside the transition zones)

Start the entire refinement of the problem.

Yes

No

Solve the system of equations.

AD introduced ?

Figure 4: Adaptive mesh refinement procedure
for moving regions, based on artificial
diffusion.



It can be concluded that the convection term is large in
the transition areas, because there the gradient of the
solution is high. The convection-diffusion problem thus
behaves as a simple diffusion problem outside these
transition areas. Therefore, no artificial diffusion is
introduced in the following computation steps, except for
the transitions areas. To avoid oscillations, the fraction of
refined elements in the moving region may not be to low.
After a few steps, the elements in the transition areas are
so small that artificial diffusion becomes superfluous.
Then, the Galerkin method is attained again, and a total
refinement can be applied to decrease the global error.

The described procedure allows for finding a locally
refined mesh, which does not cause oscillations when the
Galerkin method is applied. The same refinement scheme
can be used for streamline diffusion. Compared to
artificial diffusion, less steps are required because the
alteration of the differential equation is smaller.

6 Illustration
In the following numerical example, the rail moves at a
speed of 20 m/s to the right side. Figure 5 shows the
initial mesh for the artificial diffusion method. In the first
step, diffusion is introduced to each element in the
moving region. The first approximation with artificial
diffusion was already plotted in figure 3b. Comparison of
figures 3a and 3b shows that the regions with
concentrated field lines are located at different places.

Figure 5: Initial mesh for the artificial diffusion
method.

If the fraction of the elements in the moving region that
should be refined, is well estimated, mesh refinement is
only performed under the iron core. This can be seen in
figure 6a. Only in a particular distance from the core,
mesh refinement was applied. Figure 6b shows the
numerical solution after one refinement step. The solution
remains stable, and its steepest regions moved slightly to
the border of the rail. Besides a smoothing of the
transitions, this indicates that artificial diffusion is
moving the transition zones. After three refinement steps,
the approximation of figure 7 is calculated. The transition
zones moved to the border, and the solution remains
stable.

(a)

(b)

Figure 6: (a) Mesh and (b) artificial diffusion
solution, for a velocity of  20 m/s,
after the first refinement step.

Figure 7: Artificial diffusion solution, for a
velocity of 20m/s, after three
refinement steps.

7 Possible improvements
As outlined, there are two reasons for improving the
refinement procedure:

• Refining a certain percentage of the elements during
a few steps yields an extremely huge number of
elements.

• During the mesh refinement procedure, the transition
zones move.

The extra diffusion (AD or SD) is at its highest level in
the initial computation step. After the first adaptation step,
a better approximation is obtained, because diffusion is
only introduced to the refined areas, where the element
size is smaller. Due to the decrease of the extra diffusion
the transition areas moved slightly.



To account for this, it is possible to project a new solution
on the previous mesh. This mesh is refined again, starting
from the new approximation. After a few steps, the
difference between two successive solutions vanishes,
because the exact positions of the transitions are much
better approximated. At this stage, the projection of the
solution on a previous mesh is terminated. Then, a
successive refinement of the transition areas is performed,
to gradually decrease the amount of extra diffusion.
Eventually, no extra diffusion is required, and the
problem can be solved by the traditional Galerkin method.

8 Conclusion
Three methods to stabilize the finite element method for
convection-diffusion problems are presented. Artificial
diffusion alters the differential equation, by changing the
diffusion constant. Streamline diffusion also alters the
differential equation by adding a diffusion term that only
acts in the streamline direction. Streamline upwind Petrov
Galerkin alters the method, by using other weighting
functions. A mesh refinement procedure is described,
based on the localization of the regions where the slope of
the solution is the highest. This procedure is implemented
for artificial diffusion. The same behaviour is expected
for streamline diffusion and SUPG. Furthermore,
improvements are expected by the projection of
intermediate solutions on previous meshes.
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