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Abstract - Short computation times required for the design and 
numerical optimisation of electromagnetic devices with the finite 
element method are obtained using an adaptive mesh refinement 
algorithm. Less time is spent on the initial mesh generation, while 
the time needed for refinement is negligible when special data 
structures are used. But an even more significant reduction in 
total computation time is achieved with the initialisation of the 
solution on the generated mesh. Less Newton steps are required 
to solve non-linear problems compared to a zero initial solution, 
while the time needed for the projection of the solution is far less 
than the time needed for a Newton step. 
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I. INTRODUCTION 
 
 Design and numerical optimisation of electromagnetic 
devices using the finite element method require fast 
computations. The overall solver speed is improved using an 
adaptive mesh refinement algorithm (Zienkiewicz, 1988). The 
edge based refinement, i.e. new nodes are inserted at the three 
edges of an element, is easily implemented by using two 
special data structures (Bank, 1982, Mertens, 1998). The 
node-to-element matrix contains all elements surrounding a 
node (Figure 1a). The neighbouring-element matrix contains 
the neighbouring elements along the three edges of an element 
(Figure 1b). Binary constraints are treated in such a way, that 
elements connected through binary or periodic constraints are 
neighbouring elements. An a-posteriori error estimator selects 
the elements to be refined. Afterwards the nodes are moved to 
the centre of the surrounding elements, resulting in a lower 
average element aspect ratio and thus improving the quality of 
the generated mesh. The time needed for refinement is 
insignificant. But an even more significant reduction in total 
computation time is achieved with the initialisation of the 
solution on the generated mesh. 
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Fig. 1. Illustrating the node-to-element matrix 
and the neighbouring-element matrix 

 
 

II. INITIALISATION OF THE SOLUTION 
 
 Poisson's equation in two dimensions leads to a linear 
system of equation of the form 
 
  K A T=  (1) 
 
where K is the element matrix, A the vector of unknown 
magnetic vector potentials and T the source vector. Non-linear 
problems are solved with an outer Newton iteration. 
 
  A A Ak k k+ = +1 δ  (2) 
 
  P A T K Aδ k k= −  (3) 
 
where δA  is the vector of residues and P the Jacobian matrix. 
Both the element matrix K and the Jacobian matrix P depend 
on the approximation Ak of the exact solution. Therefore a 
start solution A0  is required to assemble the system of 
equations in the first Newton step. The same start solution can 
also be used as start solution for the iterative solver, e.g. a 
symmetric successive overrelaxation (SSOR) preconditioned 
conjugate gradient (CG) method. 
 
A. Zero initial solution 
 
 The most simple start solution is the zero solution. 
 
  0A =0  (4) 
 
The initial slope of the non-linear material characteristic is 
used for the reluctivity. 
 
B. Average of the refined edge 
 
 Because new nodes are inserted along the edges of an 
element, i.e. an edge based refinement, the average of the 
solution on the two nodes i and j of the refined edge is taken 
as initial solution on the new node n. 
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Fig. 2. Generated mesh after one refinement step (1790 nodes) 
 

 
 

Fig. 3. Projection of the previous solution on the generated mesh 
by taking the average of the refined edge 

 
This method corresponds to a full projection if the nodes are 
not moved to improve the quality of the generated mesh. 
Figure 2 shows the generated mesh after one refinement step 
for a 6-pole synchronous machine with inset permanent 
magnets (rated power 3kW). Only one pole is modelled and 
periodic boundary conditions are applied. Values of the nodal 
flux densities weighted by the energy in an element are used 
as an a posteriori error estimator. 7 refinement steps were 
calculated. Figure 3 shows the field plot of the projection of 
the previous solution on the generated mesh. Moving the 
nodes to improve the quality of the mesh, results in 
disturbances in the equipotential lines. 
 
C. Moving & averaging 
 
 Each time a node is moved, the initial solution of the node 
is recalculated as average of the solution at the surrounding 
nodes (Figure 1a). 
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Figure 4 shows the field plot of the projection of the previous 
solution on the generated mesh. No disturbances in the 
equipotential lines due to movement of nodes can be seen. 

 
 

Fig. 4. Projection of the previous solution on the generated mesh 
by moving & averaging 

 

 
 

Fig. 5. Full projection of the previous solution on the generated mesh 
 
D. Full projection 
 
 The most accurate method is a full projection of the 
previous solution on the generated mesh. A search over the 
elements of the previous mesh for each interior node, i.e. a 
node not lying on an outline, of the generated mesh is 
performed. The initial solution of each interior node is the 
interpolated value using the shape functions Ni  of the finite 
element method. 
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Due to the restoration of the original geometry during 
refinement, problems arise when a node lies on an outline arc. 
The new node falls inside the neighbouring region of the 
previous mesh or can even fall outside the model. The result is 
in both cases a jump in the magnetic vector potential along the 
outline. Because outline nodes are not moved after 
refinement, the initial solution of each outline node is 
calculated as the average of the solution at the two nodes of 
the refined outline edge (Eq. 5). Figure 5 shows the field plot 
of the full projection of the previous solution on the generated 
mesh. 
 
 
 



III. SEARCH ALGORITHMS 
 
A. Simple search 
 
 The simplest search method is an ordinary loop over the 
elements of the previous mesh for each interior node of the 
generated mesh and each time is tested if the node lies inside 
the element. This search algorithm is quadratically dependent 
on the number of nodes. Figure 6 shows the average number 
of elements searched per node for the all refinement steps. 
The overall computation time including 7 refinement steps, of 
the permanent magnet synchronous machine of Figure 2 is 80 
seconds on a HP-C200 workstation. 
 
B. Geometric search 
 
 An element k is taken as start element of the geometric 
search and checked if node n lies inside. The element is 
marked as being searched. The neighbouring element with its 
centre of gravity lying closest to node n is taken as the next 
element. A check is done and the element is marked as being 
searched. This is repeated until node n lies inside the element 
or the element was already being searched. In the latter case, 
the algorithm switches to a more guaranteed method as the 
simple search method. This switching happened only for 14 of 
the 7838 interior nodes during the last refinement step. 
 

1

10

100

1000

10000

1000 10000Number of nodes

A
ve

ra
ge

 n
um

be
r o

f e
le

m
en

ts
 se

ar
ch

ed
 p

er
 n

od
e

simple search
geometric search
geometric search with better start elements

 
 

Fig. 6. Average number of elements searched per node 
for the different search algorithms 
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Fig. 7. Principle of the geometric search method 

 Figure 7 shows the principle of the geometric search 
method as walking through the mesh. This method uses the 
same data structure, i.e. the neighbouring-element matrix, as 
the refinement algorithm and follows immediately after it. The 
start element for all nodes should be determined in an easy 
and fast way. As this method can be seen as walking through 
the mesh, an obvious choice of a start element is located 
somewhere in the middle of the model. A loop over the nodes 
is made and a surrounding element (based on the node-to-
element matrix) of the first node found lying inside a circle 
with radius R and with the centre of the extent as centre point 
is taken as start element (Figure 8). The radius R is a fraction 
of the extent of the mesh. 
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Figure 6 shows the average number of elements searched per 
node for all refinement steps. The slope in the figure indicates 
that the geometric search method is not a quadratic search 
algorithm. The non-linear problem was solved in 43 seconds. 
 
C. Geometric search with better start elements 
 
 Instead of using one start element for all nodes, a start 
element per projected node can be used as long as it does not 
take too much time to find a better start element. When a 
solution is projected on a generated mesh by refinement, start 
elements can be determined during the refinement algorithm 
itself. Two categories of interior nodes of the generated mesh 
can be distinguished. Old nodes get as start element one of the 
surrounding elements in the previous mesh. Due to the 
creation of new elements and swapping of edges, the start 
element is not necessary a surrounding element of the old 
node in the generated mesh, but it is close. New nodes get as 
start element the element from which they are created by 
refinement. Figure 6 shows again the average number of 
elements searched per node for all refinement steps. In 
average 2 or 3 elements are searched per interior node, 
making the geometric search method linear and very fast for 
generated meshes due to refinement. 33 seconds were needed 
to solve the non-linear problem. 
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Fig. 8. Determining the start element for the geometric search method 
 
 



IV. IMPROVED CONVERGENCE 
 
A. Iterative solver 
 
 Figure 9 shows the typical convergence of an SSOR-CG 
iterative solver starting from a zero solution for the first 
Newton step of the last refinement step. When the projection 
of the previous solution on the generated mesh is used as start 
solution, the curve shifts down. As in most cases local values 
of the solution are required, e.g. the calculation of the torque, 
the stopping criterion of the iterative solver is low. Only a few 
iterative steps are gained when a linear problem is solved. 
 
B. Outer Newton iteration 
 
 Figure 10 shows the number of Newton steps for the 
different projection methods. The Newton tolerance is set at 
10 4− . The projection of the previous solution on the 
generated mesh by taking the average of the refined edge is 
rather unpredictable. Moving the nodes and averaging the 
solution results in less Newton steps, because the field 
solution is more smooth. Still one or two Newton steps can be 
gained by the full projection of the previous solution on the 
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Fig. 9. Convergence of a SSOR-CG iterative solver 
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Fig. 10. Number of Newton steps for the different projection methods 
 
 

generated mesh. In average 2 or 3 Newton steps are needed 
after a few refinement steps to solve a non-linear problem in 
which saturation plays an important role, decreasing the 
overall computation time significantly. 
 

V. CONCLUSION 
 
 A fast adaptive mesh refinement algorithm is a first step to 
improve the overall solver speed. A significant reduction in 
total computation time is further gained with the initialisation 
of the solution on the generated mesh. In the full projection of 
the previous solution, a geometric search method using the 
same special data structure as the refinement algorithm is 
implemented. When a solution is projected on a mesh 
generated by refinement, the start elements of the geometric 
search method are determined during the refinement and the 
method becomes linear. In average 2 or 3 elements are 
searched per interior node of the generated mesh, making the 
method very fast. In case of non-linear magnetostatic 
problems where each Newton step means solving a system of 
linear equations, the total computation time is significantly 
reduced because in average only 2 or 3 Newton steps are 
needed after a few refinement steps. Because refinement and 
projection takes only a few percent of the total computation 
time, more can be gained by using more effective iterative 
solvers for magnetostatic problems such as multigrid methods 
or domain decomposition (Mertens, 1997). 
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