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 Abstract–To enhance the accuracy of finite element based 
computations of field quantities and their derivatives, a post-
solving technique with superconvergent properties is presented. 
This technique uses an analytical expression for the magnetic 
field potential inside a closed region. The coefficients of the 
analytical expression are evaluated using a FE solution as 
boundary condition. All second derivatives of the analytical 
expression are calculated, leading to values for the flux density B 
and its derivatives. These values are highly accurate, even when 
based upon a FE solution. As an example, the (edge) write 
gradient in a notch write head is evaluated. 
 
 Index Terms–Convergence of Numerical Methods, Finite 
Element Methods, Magnetic Fields, Magnetic Recording. 

I. INTRODUCTION 

 O enhance the accuracy of finite element (FE)  based 
computations of field and force quantities, post-solving 

techniques with superconvergent properties are commonly used 
[1]–[2]. These techniques use an analytical expression for the 
magnetic field potential inside a closed region without sources 
and consisting of one material only. The coefficients in the 
analytical expression are evaluated using a FE solution as 
boundary condition. Several applications of this method have 
been investigated, usually in order to improve FE based force 
calculations, which are very sensitive to the accuracy of the 
underlying field quantities [3]. In [4] it is shown that the energy 
error decreases as O(h2) for decreasing uniform mesh size h. 
 The first and second order derivatives of the analytical 
expression can be calculated without numerical differentiation, 
giving flux density B and its derivatives with the same accuracy 
as the original FE solution. The calculation of the derivatives of 
the flux density B is presented, using a double differentiation of 
the analytical expression for the magnetic potential. This results 
in a more reliable value for the field gradient than usually can be 
obtained using a FE solution. Field gradients are important in 
evaluating recording head performance, e.g. the edge write 
gradient in a notch write head [5]. The results of this method 
will be compared to the results obtained using two numerical 
differentiation steps. 

II. FLUX DENSITY 

 Inside a closed spherical region without sources, the 

magnetic scalar potential u(r,θ,φ) satisfies Laplace’s equation 
∇2u=0. The general solution in spherical co-ordinates (r,θ,φ) 
can be formulated as [4] 
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where pmn and qmn are coefficients depending on the boundary 
condition, and cmn(θ,φ) and smn(θ,φ) are the surface harmonic 
functions  
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using the associated Legendre polynomials of the first 
kind m

nP . The coefficients pmn and qmn are evaluated using a 
FE solution as a boundary condition for (1) on a finite 
number of points distributed over a sphere with radius R. 
Details about this procedure and the resulting explicit form of 
pmn and qmn are given in [4]. The flux density B(r,θ,φ) 
anywhere within the spherical region (r<R) can be expressed 
in terms of the coefficients pmn and qmn. The flux density in 
the centre of the sphere (r=0) acquires the simple expression 
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III. DERIVATIVES OF FLUX DENSITY 

 Not only the flux density B but also its spatial derivatives 
are related to the magnetic potential u and can be expressed in 
terms of pmn and qmn. They acquire simple expression for 
values at the centre of the sphere. 

A. ∂Bx/∂x, ∂By/∂y, ∂Bz/∂z. 

First, the derivative is transformed into the spherical co-
ordinate formulation, e.g. for the x-direction: 
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where the spherical co-ordinates are defined as 
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From (1) it is seen that the potential u can be interpreted as a 
polynomial in r: 

 K+⋅φθγ+⋅φθβ+φθα=φθ 2),(),(),(),,( rrru , (7) 

so the second derivative w.r.t. r in (6) is given by 
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The function γ(θ,φ) can be retrieved recognising that it is the 
coefficient in r2 in (1). Only the integer combinations 
(m,n)=(0,2), (1,2) and (2,2) result in a term in r2: 
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The associated Legendre polynomials m
nP  are based upon the 

ordinary Legendre polynomials Pn as follows: 
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The three Legendre terms in (9) are 
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Now γ(θ,φ) can be evaluated using θ=π/2 and φ=0 to give the 
derivative ∂Bx/∂x at the origin. By using the appropriate 
values for θ and φ, the derivatives ∂By/∂y and ∂Bz/∂z at the 
origin are found immediately: 
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B. ∂Bx/∂y and ∂By/∂x 

Since the values at the centre of the sphere are the target, and 
since these derivatives only involve the co-ordinates x and y, 
the analysis can be performed in the plane z=0. The potential 
u restricted to the plane z=0 (θ=π/2) is 
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with r2=x2+y2 and φ=arctan(x/y). The derivative of (13) 
w.r.t. x is given by 
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The derivative (14) has to be derived further w.r.t. y. Before 
doing this, (14) can be confined to the y-axis without losing 
its validity, i.e. x=0. Care must be taken to perform the 
derivations (∂/∂x and ∂/∂y) and simplifications (z=0 and x=0) 
in the correct order. For x=0 (φ=π/2), r=y and (14) becomes 
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and the derivative w.r.t. y is 
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For the value of this derivative at the centre of the sphere, y=0 
still needs to be filled in. The only terms in the double sum of 
(16) that do not disappear for y=0 are the combinations (m,n) 
with n–2=0, i.e. (1,2) and (2,2): 
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Evaluating the Legendre terms gives 0)0(1
2 =P  and 

3)0(2
2 =P , which yields the field gradient 
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C. ∂Bz/∂y, ∂By/∂z, ∂Bz/∂x, ∂Bx/∂z 

The procedure is illustrated for the first pair. Since these 
derivatives only involve co-ordinates y and z, the analysis can 
be performed in the plane x=0. The potential u is first 
restricted to the plane x=0 (φ=π/2) and subsequently derived 
w.r.t. z and evaluated at z=0, giving 
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where the term in brackets is a constant. Next, (19) is derived 
w.r.t. y and subsequently evaluated at y=0: 
 



 

 

 
Fig.1. Finite element discretisation of a recording head. 
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The only terms in the double sum (20) that do not disappear 
for y=0 are the combinations (m,n) with n–2=0, i.e. (0,2), 
(1,2) and (2,2). The final result is obtained as 
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and in a similar fashion it is found that 

 120

0
0
0

0
0
0 3 p

z
B

x
B

z
y
x

x

z
y
x

z µ−=
∂

∂
=

∂
∂

=
=
=

=
=
= . (22) 

IV. EXAMPLE: WRITE GRADIENT 

Fig.1 shows a coarse FE mesh of a notch write head with write 
gap g=0.5µm (first order elements). The field gradient ∂By/∂y is 
calculated along the indicated plane in front of the recording 
head. The field gradient in this plane is calculated using (12) 
(Fig.2a) and compared to the value obtained using two 
numerical differentiations of the FE solution (Fig.2b). The 
superconvergent formulae clearly show a more realistic and 
reliable pattern for the gradient, although the FE mesh is very 
coarse and first order. 
 Fig.3 shows a front view of the recording head and a contour 
plot of ∂By/∂y in this plane. This information is used to indicate 
the region in front of the recording head where the (edge) write 
gradient reaches the media coercitivity Hc. It is well known that 
this limit contour reaches further along the recording head edges 
than is the case in the middle of the track (on-track position) [5]. 
The contour plot is slightly asymmetric due to the error in the FE 
solution because of the coarse meshing. 
 The total CPU time consists of calculation and tetrahedron 
searching. The calculation time is proportional to the number of 
points where the field solution is sampled. For double numerical 
differentiation, this is the number of points NP that is sampled in 
the plane. For local post-solving, the number of samples is NP·D, 
where D is the number of points sampled on one sphere. For 
good results, D≥400 is recommended [4]. Fast searching 
algorithms for localising the tetrahedron that contains a given 
point will decrease the CPU time considerably since most time is 
spent searching for the next tetrahedron. In total, the local post-

solving technique typically requires 20 times the CPU time of 
double differentiation. 

VI. CONCLUSION 

 Calculating the second derivatives of an analytical expression 
for the magnetic scalar potential satisfying Laplace's equation, 
leads to highly accurate formulae for all field gradients. The 
values obtained are considerably more reliable than the values 
obtained using double numerical derivation. These formulae can 
bring important improvement to FE based results of recording 
head characteristics, e.g. edge write gradients. 

(a)  

(b)  

Fig.2. Field gradient ∂By/∂y in recording plane, calculated using (a) 
superconvergent formulae and (b) two numerical differentiations. 

         
Fig.3. Contour plot of field gradient ∂By/∂y in recording plane (front view), 
using superconvergent formulae. 
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