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Abstract This paper deals with the coupled mechanical-electrostatic analysis of a shunt capacitive
MEMS switch. The mechanical and electrostatic parts of the problem are modelled by the FE and
BE methods, respectively. The fast multipole method is applied to reduce the storage requirements
and the computational cost of the BE electrostatic model. An adaptive truncation expansion of the
3D Laplace Green function is employed. The strong interaction between the mechanical and
electrostatic systems is considered iteratively.

1. Introduction
Electrostatic parallel-plate actuators are widely used in many types of
microelectromechanical systems (MEMS). MEMS switches can be used in series or
shunt mode and their contacts can be resistive or capacitive (Brown, 1998; Tilmans,
2002). A shunt capacitive MEMS switch consists of a metal armature (bridge)
suspended over a bottom conductor, e.g. the center conductor of a coplanar waveguide,
mechanically anchored and electrically connected to the ground. A thin dielectric film
is deposited on the bottom conductor (Figure 1). When the bridge is up, the capacitance
of the switch is very small and the RF signal passes through freely (the RF switch is
on). By applying a bias voltage the switch is actuated: an electrostatic force occurs
between the top and bottom conductors and the bridge is pulled down, the capacitance
increases and causes an RF short to ground (the RF switch is off) (Brown, 1998;
Tilmans, 2002).

These actuators can be treated, in first approximation, as lumped spring-mass
systems with a single mechanical degree of freedom (Tilmans, 2002). This analysis is
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helpful for physical insight, but disregards important effects such as the bending of the
top plate and the stiction between the bridge and the bottom contact (Brown, 1998).
The performance of RF MEMS switches strongly depends on the deformation of the
top electrode. A detailed knowledge of the exact deformation for an accurate estimate
of the capacitance is thus crucial.

A boundary element (BE) approach is particularly suited for the analysis of the real
electrostatic problem (Farina and Rozzi, 2001). Indeed, the BE method provides a
rigorous treatment for open problems and allows to consider the deformation without
any remeshing. The elastic deformation of the top plate (and the suspension beams)
can be handled by means of a finite element (FE) model. It depends directly on the
electrostatic force exerted on the bridge and the material properties. The electrostatic
field induces a force distribution, the value of which increases when the distance
between the top and bottom plate diminishes. This interaction between the electrostatic
and mechanical systems can be considered iteratively.

A significant disadvantage of the BE electrostatic model is that it leads to a fully
populated system matrix limiting the size of the problems to be handled. The
fast multipole method (FMM) (Rokhlin, 1983), combined with an iterative solver,
e.g. GMRES (Saad and Schultz, 1986), can be employed to overcome this limitation by
diminishing both storage requirements and the computational time. The FMM method
has succesfully been applied to solve electrostatic problems in Buchau et al., 2000; and
Nabors and White, 1991.

In this paper, we discuss the coupled mechanical-electrostratic analysis of a
capacitive MEMS shunt switch. Section 2 outlines the electrostatic BE model of the
actuator. The FMM is briefly described in Section 3. An adaptive truncation scheme for
the 3D Laplace Green function is employed. Section 4 deals with the elastic deformation
FE model. In Section 5, the application example is considered. Simulated results
obtained by means of different software packages are briefly compared.

2. Electrostatic BE model
We consider an electrostatic problem in R3: The conductors are embedded in multiple
homogeneous isotropic dielectrics and set to fixed potentials.

The surfaces of conductors and dielectrics G ¼ GC < GD are discretised with plane
triangles. The surface charge density q is assumed to be piecewise constant.
The conductors can be replaced by their charge density on their surfaces qc and

Figure 1.
Electrostatically actuated

capacitive shunt switch
implemented on a CPW

transmission line. Side and
top views
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the homogeneous dielectrics by the polarisation charge qp. The total charge on the
interface conductor-dielectric GC is given by the sum of both types of charges.
Analogously, on the surface between two dielectrics GD the total charge is the sum of
the polarisation charge due to both dielectrics (Rao et al., 1984). The following system
of nq linear equations has to be solved

MQ ¼ B; ð1Þ

where Q ¼ ½q1. . .qnq
�T contains the charge densities on the elements and B ¼

½b1. . .bnq
�T depends on the boundary conditions. For an element on the surface of a

conductor GC, the entry in B is the imposed potential; for an element on the interface
between two dielectrics GD, the entry in B is zero. The elements of the dense
nonsymmetric matrix M when k is an element on a conductor are given by

Mk;l ¼
1

10

I
Gl

GðrkÞ dG 0 with GðrkÞ ¼
1

4prk

: ð2Þ

GðrkÞ is the 3D Laplace Green function, rk ¼ jrk 2 r 0j being the distance between
a source point r 0 (on Gl [ G) and an observation point r k (on GC). Considering the
continuity of the normal component of the dielectric displacement d ¼ 1e at the
dielectric-to-dielectric interface, GD, the elements of M if k is an element on GD read:

Mk;l ¼

1k2 2 1k1

10ð1k1 þ 1k2Þ

I
Gl

grad GðrkÞ · nk dG 0; k – l;

1

210
; k ¼ 1:

8>>><
>>>: ð3Þ

where nk is the outward-normal unit vector pointing into the dielectric with
permittivity 1k2: The integrals in equations (2) and (3) can be evaluated analytically
(Graglia, 1993).

The electrostatic force Fe distribution can be calculated as

FeðrÞ ¼
1

2
qðrÞeðrÞ: ð4Þ

The electric field e as r approaches the interface conductor-dielectric can be expressed
as (Rao et al., 1984):

e^ðrÞ ¼ ^n
qðrÞ

210
þ

1

4p10
kgrad GðrÞ; qðr 0ÞlG; ð5Þ

where + indicates the outer face of the conducting surface and 2 the inner one, n is the
normal unit vector pointing outside the conductor and k·; ·lG denotes a surface integral
on G of the product of its arguments. As inside the conductor e2 ¼ 0; considering
equation (5), it follows that eþ on the surface of the conductor is given by

eþðrÞ ¼ n
qðrÞ

10
: ð6Þ

Substituting equation (6) in equation (4), the expression of Fe as a function of the
charge distribution is obtained as
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FeðrÞ ¼
1

210
q 2ðrÞn: ð7Þ

3. Fast multipole method
The implementation of the FMM requires the grouping of the elements on the surface
boundary

G ¼ <#g
g¼1Gg:

A good choice is a scheme based on cubes, i.e. un octree (Buchau et al., 2000; Nabors
and White, 1991). Note that in a single level FMM, as described in the present paper,
only the finest level of the octree is. The interactions between the distant groups are
then determined by means of the multipole expansion of the Laplace Green function.

3.1 Multipole expansion
Let Gs be a source group with center rsc and a source point rs; and Go an observation
group with center roc and an observation point ro: We define the vectors r ¼
ro 2 roc ¼ ðr; u;fÞ; rc ¼ roc 2 rsc ¼ ðrc; uc;fcÞ and r 0 ¼ rsc 2 rs ¼ ðr 0; u 0;f 0Þ:
Omitting the factor 1=4p; the 3D Laplace Green function (2), with r ¼ jro 2 rsj; is
expanded as (Rokhlin, 1983):

1

r
¼ R

X1
m¼0

Xm

n¼2m

X1
u¼0

Xu

v¼2u

Dm;n Tmþu;nþv Au;v

 !
; ð8Þ

with

Dm;nðrÞ ¼
r mLn

mðu;2fÞ

ðm þ nÞ!
; ð9Þ

Tmþu;nþvðrcÞ ¼
ðm þ u 2 ðn þ vÞÞ!

rmþuþ1
c

Lnþv
mþuðuc;fcÞ; ð10Þ

Au;vðr
0Þ ¼

r 0uLv
uðu

0;2f 0Þ

ðu þ vÞ!
; ð11Þ

where Ln
mðu;fÞ ¼ Pn

mðcos uÞe inf; Pn
m being the Legendre function of degree m and

order n. The imaginary number is denoted ı and R indicates the real part.
In practice, the multipole expansion (8) must be truncated by taking 0 # m # p and

0 # u # p; where the truncation number p must be sufficiently large to limit the error
to a prescribed value 1. In most cases, the conventional choice p ¼ log2ð1=1Þ (Rokhlin,
1983) is too conservative. Indeed, if r 0 ! rc and r ! rc; a smaller number of terms
suffices. Let us consider the radii of the source and observation groups, Rs ¼
maxGs

ðr 0Þ; Ro ¼ maxGo
ðrÞ; and the distance between their centers d. A more economic

law p ¼ pðRs=d;Ro=d; 1Þ; proposed by some of the authors in Sabariego et al. (2004),
considers those distances.

The function grad G in equation (3) can be expanded in a similar way. It suffices to
derive equation (9) with respect to the coordinates of the observation point.
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3.2 Application to the BE model
Two groups Gs and Go are said to be “far” groups if Rs=d , t and Ro=d , t; where d
is the distance between the group centers and t is chosen smaller than 1/2.

For demonstrating the FMM, the BE dense matrix M equations (2) and (3) can be
formally written as

M < Mnear þ Mfar ¼ Mnear þ

Go;Gsfar

X#g

o¼1

X#g

s¼1|fflfflfflffl{zfflfflfflffl}
Mfar

o;s: ð12Þ

Let us consider the degrees of freedom qk and ql of q in the respective far groups
Go [ GC and Gs [ G. Substituting equation (8) in equation (2), the contribution to the
corresponding element ðM far

o;sÞk;l in M far is given by

R
Xp

m¼0

Xm

n¼2m

MD
o;k;m;n

Xp

u¼0

Xu

v¼2u

MT
mþu;nþv MA

s;l;u;v

 !
; ð13Þ

MD
o;k;m;n ¼

Z
Go;k

Dm;n dG; MA
s;l;u;v ¼

Z
Gs;l

Au;v dG; ð14Þ

MT
mþu;nþv ¼

1

4p10
Tmþu;nþv: ð15Þ

The iterative solution of the system of algebraic equations requires the multiplication
of Mfar by a trial vector Q. Group by group, the field produced by the electric charge q
in the considered group is aggregated into its center by equation (14). This aggregated
field is then subsequently translated to the centers of all the far groups by equation
(15), and finally, the aggregated and translated field are disaggregated into the degrees
of freedom of the far groups, thanks to equation (14).

The multiplication of MfarQ is further accelerated by means of the adaptive
truncation scheme following the law p ¼ pðRs=d;Ro=d; 1Þ (Sabariego et al., 2004).
In case of preconditioning of the iterative solver, the preconditioner is based on the
sparse matrix comprising the BE near-field interactions.

The assembly stage of the FMM consists in calculating and storing the required
complex numbers MD

o;k;m;n;M
T
mþu;nþv and MA

s;l;u;v: The matrix Mfar itself is never built.
The integrations in equation (14) are done numerically, but as we are dealing with far
interactions a limited number of Gauss integration point suffices. The matrix Mnear is
calculated in the conventional way (see previous Section) and stored using a sparse
storage scheme. For the MD and MA data of a given group, the truncation number p
considered during the FMM assembly stage is determined by its closest far group,
p ¼ pmax: For the MT data, the truncation number p is determined by the two groups
Gs and Go involved in the translation, p ¼ pso: During the iterative process, the
aggregation step is carried out with p ¼ pmax; while p ¼ pso suffices for the translation
and disaggregation.
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4. Elastic deformation-FE model
The upper electrode is deformed by the electrostatic force exerted on it. The elastic
equation has to be considered alongside the electrostatic equations. For linear elastic
isotropic materials, it reads:

DTEDu þ F ¼ 0; ð16Þ

where D is the differential operator matrix with transpose DT, E is the elasticity
tensor, u is the displacement vector and F is the total force exerted. The elasticity
tensor E relates the stress tensor with the strain tensor. It depends on the Young’s
modulus E and the Poisson’s ratio n (Pilkey, 2002).

5. Application example
The shunt capacitive MEMS switch shown in Figure 2 is chosen as the test case.
It concerns a perforated top plate ðthickness ¼ 4mmÞ suspended by a set of beams, and
a bottom plate ðthickness ¼ 0:5mmÞ coated with a thin dielectric layer ðthickness ¼
0:2mm; 1r ¼ 7Þ: The beam suspension allows a vertical movement with respect to the
fixed bottom plate. The top plate is perforated to facilitate the under-etching of the
structure. The dimension of the holes is 25mm £ 25mm; with a pitch of 50mm:
The mechanical material constants of the top plate are E ¼ 70 Gpa and n ¼ 0:3:

The BE method with FMM acceleration is applied for solving the electrostatic
problem while the mechanical problem is handled by a FE model. All the above
mentioned methods are implemented in GetDP (2003). The behaviour of the switch is
simulated using a discretisation consisting of 6,544 triangles and 11,151 tetrahedra,
which yields 6,544 degrees of freedom for the piecewise element constant charge q and
56,331 degrees of freedom for the second-order interpolation of the displacement m.

The optimal number of FMM groups (for this particular mesh) is found to be 35.
The maximum and average truncation number are pmax ¼ 6 and pav ¼ 4 for
Rfar ¼ 135mm and 1 ¼ 1026:

The electrostatic and mechanical systems are solved iteratively by obtaining the
new electrostatic force distribution and the new displacement. The number of

Figure 2.
Geometry of shunt

capacitive MEMS switch:
Lc ¼ 475mm, bc¼ 275mm,

Lin¼ 485mm,
bin¼ 285mm,
Ls¼ 625mm,

Lb¼ 205mm, bb¼ 20mm,
and da¼ 80mm
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iterations required for sufficient convergence of, e.g. the capacitance increases as the
applied bias voltage approaches the pull-in voltage and the deformation of the top plate
becomes bigger.

The calculated zero-voltage capacitance CV¼0 and pull-in voltage V IN are 0.36 pF
14.2 V, respectively.

The deformation of the top electrode for a bias voltage of 11 V for the successive
iterations is shown in Figure 3. Convergence is achieved after nine iterations.

The results obtained with GetDP (GetDP, 2003) are compared with those given by the
commercial software packages Coventor (Coventor, Inc. 2003) and FemLab (FemLab,
1997-2004). In the simulations performed with the commercial programs, only a quarter
of the geometry is considered. In the Coventor simulation, the electrostatic part is
modelled by means of the BE method while the mechanical part is dealt with using the
FE method and second-order elements. Only symmetry boundary conditions are
considered for the mechanical problem. In the FemLab computation, the whole
electromechanical problem is solved by the FE method. Symmetry conditions are
imposed for the electrostatic problem. With regard to the mechanical part, the elastic
behaviour of the suspension (beams) is approximated by a stiffness constant (Brown,
1998; Tilmans, 2002). For the face of the top electrode that is coupled with the suspension,
the displacement is obtained by dividing the total electrostatic force by the stiffness
constant.

The nominal capacitance CV¼0 obtained by Coventor and Femlab is 0.4 and 0.37 pF,
respectively. The pull-in calculated voltage is 14.24 V for Coventor and 17.25 V.

The computed value of the capacitance as a function of the applied voltage is shown
in Figure 4 for the three different solvers. The curves C 	 V obtained with GetDP and
FemLab agree well for low applied voltage, when the deformation is small. As the
applied voltage increases, an accurate estimate of the displacement becomes critical,
the approximation used for the suspension does not suffice. On the contrary, the
agreement between the curves obtained with GetDP and Coventor is better as the
voltage increases. The influence of three quarters of the device are disregarded for the
electrostatic computation, but the mechanical part is solved accurately. Figure 5 shows

Figure 3.
Convergence of the
vertical displacement
along a line through
the suspension beams
and perforated plate
for an applied bias
voltage of 11 V
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the maximum vertical displacement of the top electrode as a function of the applied
bias voltage. A good agreement between the values obtained by means of GetDP and
Coventor is observed. Approximation is used for the mechanical problem with a
stiffness constant for modelling the suspension in the FemLab.

6. Conclusion
A shunt capacitive MEMS switch has been modelled. The BE method, accelerated by
the FMM, and the FE method have been applied to solve the electrostatic and
mechanical problem, respectively. An adaptive truncation scheme for the 3D Laplace
Green function has been employed. The results have been compared with those
obtained with the commercial packages Coventor and FemLab.

Figure 4.
Calculated capacitance vs

the applied bias voltage
simulation explains the

divergence of the curves

Figure 5.
Maximum vertical

displacement of the top
electrode vs the applied

bias voltage
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