
IEEE Transactions on Magnetics, Vol.34, No.5, Sept. 1998, pp. 3327-3330 

13 

An Algebraic Multigrid Method for Solving Very Large Electromagnetic Systems 
 
 

Ronny Mertens, Herbert De Gersem, Ronnie Belmans and Kay Hameyer 
Katholieke Universiteit Leuven, Dep. EE (ESAT), Div. ELEN, Kardinaal Mercierlaan 94, B-3001 Leuven, Belgium 

 
Domenico Lahaye, Stefan Vandewalle and Dirk Roose 

Katholieke Universiteit Leuven, Dep. Computer Science, Celestijnenlaan 200A, B-3001 Leuven, Belgium 
 

 
 Abstract — Although most finite element programs have quite 
effective iterative solvers such as an incomplete Cholesky (IC) or 
symmetric successive overrelaxation (SSOR) preconditioned 
conjugate gradient (CG) method, the solution time may still 
become unacceptably long for very large systems. Convergence 
and thus total solution time can be shortened by using better 
preconditioners such as geometric multigrid methods. Algebraic 
multigrid methods have the supplementary advantage that no 
geometric information is needed and can thus be used as black 
box equation solvers. In case of a finite element solution of a non-
linear magnetostatic problem, the algebraic multigrid method 
reduces the overall computation time by a factor of 6 compared 
to a SSOR-CG solver.  
 

Index terms — numerical analysis, electromagnetic analysis, 
iterative methods, finite element methods. 
 

I. INTRODUCTION 
 
 In finite element programs, direct methods are nowadays 
often replaced by iterative methods to solve the system of 
discretized linear equations. Stationary methods such as 
Jacobi, Gauss-Seidel and successive overrelaxation are 
straightforward to implement but usually not very effective. 
The conjugate gradient method, a non-stationary method, is 
harder to apply, but very effective when used in combination 
with a good preconditioner. Symmetric successive 
overrelaxation and incomplete Cholesky decomposition are 
often used as preconditioners for the CG method. Multigrid 
methods can be used as solvers. Their use as preconditioner 
often results in even more efficient iterative methods. 
 

II. MULTIGRID METHODS 
 

The concept of multigrid methods is not new. The basic 
idea of this iterative method is to combine computed results 
obtained on different scales, using results from one scale to 
wipe out certain error components of the approximation of 
the solution on another scale (Fig. 1 & 2). An extensive 

treatment of multigrid methods can be found in [1]-[3]. Here, 
the main ideas are briefly recalled. 

The finite element discretization on a mesh of size h, of a 
diffusion problem, e.g. Poisson's equation, leads to a system 
of linear equations of the form 
 
 A x bh h h= , (1) 
 
where Ah  is a sparse, symmetric and positive definite matrix, 
bh  the right-hand side vector and xh  the solution vector. 
 Stationary iterative solvers have a general form of 
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e.g. Jacobi ( Mh  is the diagonal of Ah ) or Gauss-Seidel 

( Mh  is the lower triangular part of Ah ). The error x xh h
k−  

can be seen in the Fourier space as a linear combination of 

 

 
 

Fig. 1. Error after 0, 2 and 50 Jacobi iterations. 
 
 

 
 

Fig. 2. Error after 2 Jacobi iterations projected on a coarser grid. 
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sinusoidal waves. Certain classes of stationary methods, 
so-called smoothers, effectively reduce the short waves (high 
frequency components) in the error (Fig. 1). Convergence 
stalls, however, as soon as the error becomes smooth. Slowly 
varying functions, such as the smoothed error, can be 
represented on coarser meshes without too much loss of 
information (Fig. 2). Because these functions are seen on a 
larger scale, they appear to be more oscillatory again. The 
idea in multigrid is to use a hierarchy of continuously coarser 
grids and to exploit the smoothers to filter out the high 
frequency error components on each grid. 
 One iteration of a basic two-grid iterative process consists 
of different steps (Fig. 3). A few (for example two) error 
smoothing steps are applied on the fine grid. xh

k  is the 
obtained approximation of the solution after smoothing. The 
defect 
 
 d b A xh

k
h h h

k= −  (3) 
 
is projected onto a coarser grid with mesh size H, where a 
coarse grid correction term is computed. This projection is 
denoted by dH

k . The coarse grid correction eH
k  is the 

solution of  
 
 A e dH H

k
H
k=  (4) 

 
with AH  the coarse grid equivalent of Ah . As the coarse 
grid contains less points than the original fine grid, solving 
(4) is substantially cheaper than solving (1). The correction 
term is interpolated on the fine grid, which gives eh

k , and 
added to the previous approximation. 
 
 x x eh

k
h
k

h
k= +  (5) 

 
Finally, as the latter operation reintroduces high frequency 
error components to the existing approximation, a few post-
smoothing steps have to be performed. 
 In the multigrid extension of the two-grid method the latter 
is recursively called, to compute the coarse grid correction 
until the coarseness of the mesh makes the cost of applying a 
direct solver negligible. 
 As the multigrid method is a stationary iterative process, its 
iterates can also be cast into the form (2) for some matrix 
Mh . Unlike the previously mentioned solution methods, the 
number of iterations required by multigrid techniques in order 
to obtain a prescribed accuracy is independent of the mesh 
size. In this sense multigrid methods are optimal [1],[4]. 
 
 In computing the solution by using a multigrid technique, 
not only the matrix and right-hand side are required, but a 
sequence of coarser grids as well. This makes the 
implementation of a multigrid technique more involved than 
that of a single grid iterative method. 
 

III. ALGEBRAIC MULTIGRID METHODS 
 
A. Algebraic Multigrid Method as Solver 
 
 The algebraic multigrid method (AMG) imitates a 
geometric multigrid method by using information about the 
system matrix only. This makes AMG attractive as black box 
solver. 
 In AMG a set-up phase and a cycling phase are 
distinguished. A hierarchy of coarser grids is automatically 
generated in the set-up phase. The coarse grid is seen as a 
subset of the fine grid. The points i and j are called strongly 
connected to each other if the matrix entry Aij  is large 
enough. The points of the coarse grid are chosen in such a 
way that [5]: 
 
• each point in the coarse grid is strongly coupled to at least 

one point in the fine grid, 
• and no two points in the coarse grid should be strongly 

connected to each other. 
 
 Once the sequence of grids, projection and interpolation 
operators are defined, the iteration process proceeds similar 
to a geometric multigrid. 
 
B. Algebraic Multigrid Accelerated by Outer CG Iteration 
 
 Stationary methods of type (2) can often be accelerated by 
conjugate gradient or, more generally, Krylov subspace 
methods [6]. The stationary method is then called a 
preconditioner of the accelerated scheme. If a linear method 
is only slowly convergent, or even divergent, it may still make 
a very effective preconditioner. The lack of satisfactory 
convergence of the unaccelerated method is often due to the 
particular nature of the spectrum of M Ah h

−1 . This may 
consist of clusters of points surrounded by a few outlyers, the 
latter being the cause of the slowdown or divergence. The CG 
or Krylov method removes the error components associated 
with the outlyers very effectively. Hence these methods 
notably accelerate the linear method, they also make the 
overall iteration more robust. This is achieved at a fairly 
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Fig. 3. Scheme of a two-grid method. 
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negligible cost. Fig. 4 gives the spectrum of M Ah h
−1  for one 

of the calculations of the example. 
 
C. Implementing the Acceleration 
 
 The implementation of a preconditioner for CG involves 
the computation of 
 
 z M r= −

h
1  (6) 

 
as one of the steps in the algorithm. r and z are the residual 
and the new search direction respectively and Mh  is the 
matrix that identifies the particular preconditioner. By 
comparing (2) and (6), it can be seen that AMG can be 
implemented as preconditioner without explicit knowledge of 
the Mh  matrix. Therefore, the right-hand side in (2) is set to 
be equal to the residual, the starting solution equal to zero, 
and one iteration of AMG is computed. 
 

IV. COMPARISON OF THE DIFFERENT SOLVERS 
 
 To compare the total solution time of different solvers, a 
synchronous line-start motor excited with permanent magnets 
is taken as an example. Saturation plays an important role in 
the behaviour of this machine. Fig. 5 shows the initial and an 
intermediate mesh of the finite element model. The field plot 
of the corresponding intermediate solution is shown in Fig. 6. 
Values of the nodal flux densities weighted with the energy in 
an element are used as an a posteriori error estimator. 13 
adaptation steps were calculated on a HP C-160 workstation. 
Fig. 7 shows the total solution times after each adaptation step 
for the different methods. The AMG code is implemented by 
[5]. AMG accelerated by an outer CG iteration is 40% faster 
than AMG used as solver. Fig. 8 shows the average number 
of iterations per Newton step in each adaptation step. The 
linear system in each Newton step 
 
 

   
 

Fig. 5. Initial (1092 nodes) and intermediate mesh (11147 nodes) of a 
synchronous line-start motor. 

 

 
 

Fig. 6. Field plot of a synchronous line-start motor (11147 nodes). 
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Fig. 7. Total solution times after each adaptation step. 
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Fig. 4. Spectrum of the matrix M Ah h

−1 . 
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Fig. 8. Average number of iterations per Newton step. 
 
 

is iterated to convergence (machine precision). The number 
of iterations is practically independent of the number of 
nodes. To solve the system after 13 adaptation steps (243620 
unknowns), AMG-CG required only an average of 18 CG 
iterations in the last Newton step, while AMG needed 47 
cycles. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. CONCLUSION 
 
 Despite the extra cost per iteration by applying an algebraic 
multigrid method as preconditioner for the conjugate gradient 
method (AMG-CG), the solution time is reduced by a factor 
of 2 for small problems and a factor of 6 for very large 
problems, when compared to symmetric successive 
overrelaxation as preconditioner (SSOR-CG). The increase to 
180 % (82.5 MB instead of 45.5 MB for 243620 nodes for a 
non-linear problem) in allocated memory for storing and 
solving the system of linear equations, is therefore worth 
paying. As AMG can be used as a black box solver, AMG-
CG promises to be very well suited to solve 3D problems 
where the solution time increases even more rapidly and the 
geometric construction of coarse meshes is even more 
troublesome than in the 2D case. 
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