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 Abstract — A lumped parameter model describing the outside 
electric connection of conductors is linked with a finite element 
model to compute the magnetic field distribution. A well-
established method for circuit analysis is adapted for this 
purpose. A suitable analysis to consider solid conductors and 
stranded conductors simultaneously as parts of the external 
electric circuit is stated. This approach yields a general coupling 
mechanism that keeps symmetry if both the magnetic and the 
electric problems are symmetric. The generality of the method 
makes the implementation straightforward and powerful. The 
maturity of the method is proved by the computation of different 
eddy current problems. 
 

Index terms — eddy currents, finite element methods, signal 
flow graphs. 
 
 

I. INTRODUCTION 
 
 The magnetic field of an eddy current problem depends on 
the way of connecting the solid conductors and stranded 
conductors of the magnetic finite element (FE) model with 
external impedances, voltage sources and current sources. As 
the main interest goes to the magnetic field distribution, the 
circuit connection is often seen as an extra boundary 
condition [1]. Extra equations are added for current driven 
solid conductors and voltage driven stranded conductors [2]-
[5]. This approach treats circuit connections fragmentarily. In 
most technical cases, however, the conductors are joined 
together in a complex way [1]. The load of the physical 
system enters the model via the electric circuit. The stability 
of the solution is strongly related to the properties of the 
electric circuit [1][4][6]. These remarks affirm the importance 
of a general and robust method for modelling and coupling 
the external circuits. 
 
 

II. MAGNETIC MODEL 
 
 The magnetic flux density B  and the electric field strength 
E  are written in terms of the magnetic vector potential A  
and the electric scalar potential V  [7]. Ampère’s and 
Faraday’s laws give the partial differential equation 

∇ × × + = −ν∇ σ ∂
∂

σ∇A A
t

V  (1) 

where ν  is the magnetic reluctivity and σ  is the electric 
conductivity. The Galerkin form of (1) is discretized by 
means of finite elements for a 2D quasi-static model (2) and a 
2D problem considering motional eddy current effects (3). 
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Ni  is the form function associated with the mesh node i . 
nstr  and nsol  are the numbers of stranded and solid 
conductors respectively. I str p,  is the current per strand, Nt p,  

is the number of turns and ∆ str p,  is the cross-section of 

stranded conductor p . Vsol q,  is the voltage drop and ∆ sol q,  
is the cross-section of solid conductor q . v  is the speed. l  
is the active length of the magnetic model. In stranded 
conductors, no skin effect appears. Therefore, the 
contributions of the cross-sections of the stranded conductors 
to Lij  and Mij  are zero [3]. 
 
 

III. CIRCUIT CONDITIONS 
 
 As long as all currents inside the stranded conductors and 
all solid conductor voltage drops are known, no extra 
unknowns have to be added to the system of equations. 
Voltage driven stranded conductors and current driven solid 
conductors cause I str p,  respectively Vsol q,  to be unknowns. 
The voltage drop over a stranded conductor p  is 
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where f str p,  is the fill factor of the stranded conductor [8]. 
The total current through a solid conductor q  is 
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If all stranded conductors are voltage driven and if all solid 
conductors are current driven, the coupled matrix is 
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Symmetry is obtained by multiplying (6) with χ ω= 1
j l  and 

(5) with −χ  [3,9]. 
 

IV. EXTERNAL CIRCUITS 
 
 In reality, magnetic branches are connected to each other 
respectively to several sources and impedances. Circuit 
analysis translates the circuit in a systems of equations. The 
coupling to a magnetic FE description requires that I str p,  

and Vsol q,  are circuit unknows or can be derived from them. 
 Consider the circuit in Fig. 1. A nodal circuit analysis 
associates a voltage Vm  to each node m . For each connected 
part of the circuit one reference node Vm0 0=  is chosen. This 
approach fulfils the Kirchoff Voltage Law (KVL) explicitly. 
For each node the Kirchoff Current Law (KCL) is written. In 
the Modified Nodal Analysis (MNA), this is immediately 
performed in terms of the nodal voltages and the branch 
admittances. A problem occurs for voltage sources and 
stranded conductors. Here, an extra unknown current is added 
to the system. An extra equation expresses the voltage drop. 
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This method generates a zero-diagonal element that may 
make the solving of the system of equations troublesome. 
 The Compact MNA eliminates both, the unknown current 
and one of the nodal voltages by an appropriate substitution. 
The resulting system is symmetric. The substitution of the 
dense circuit conditions for stranded conductors in the sparse 
FE equations, results in a significant loss of matrix sparsity. 
 A compacted branch analysis generates the same problem 
but for solid conductors. It is obvious that the optimal 
approach of the circuit coupling is a description in terms of 
both, unknown currents and unknown voltages. 
 

V. SIGNAL FLOW GRAPH 

 
 A topological method for circuit analysis, like the Signal 
Flow Graph (SFG) method, derives a graph structure out of 
the circuit. Operations on the graph reduce the problem and 
enable an optimal implementation of this method. A SFG is a 
weighted and directed graph representing a system of 
equations [10]. The value of a node equals the sum of all 
node values from which the incoming arrows originate, 
weighted with the arrow weights. A source node is a node 
with only outgoing arrows. A dependent node is a node with 
at least one incoming arrow. A sink node is a node with only 
incoming arrows. The SFG represents a symmetric system if 
the paths between two dependent nodes in both directions 
have the same weights. The extraction of the matrix equations 
out of a SFG is straightforward. The unknown graph nodes 
become system unknowns. The dependent graph nodes 
represent matrix equations. 
 A loop is a circuit path with the same begin and end node. 
A cutset is a set of branches which removal splits the circuit 
in two parts. A tree is a set of branches that connects all 
nodes and contains no loops. The remaining branches are 
forming the cotree. A link is a cotree branch. A fundamental 
loop is a loop formed by one link and a set of tree branches. 
A fundamental cutset is a cutset formed by one tree branch 
and a set of links [11]. It is assumed that the set of the voltage 
sources does not contain loops and that the set of the current 
sources does not contain cutsets. 
 A tree is traced through the circuit with respect to the 
privileged order: voltage sources, solid conductors, 
admittances and stranded conductors. As a consequence, the 
privileged order of cotree members is: current sources, 
stranded conductors, impedances and solid conductors. In 
Fig. 1 the bold lines represent tree branches, whereas the thin 
lines represent links. 
 The SFG is built by putting a node for each voltage and 
current (Fig. 2) [12]. The KCL and KVL are expressed by 
arrows between the nodes. Joining graphs does not change the 
graph nodes as long as the dependent nodes of the first graph 
correspond to source nodes of the other graph and vice versa. 
Therefore, branch current-voltage relations (BCVR) are 
added either as impedances or admittances (Fig. 2) [12]. Two 
dependent nodes are joined together to a zero node by 
changing the sign of all incoming branch weights of one of 
the subgraphs. This happens for the stranded conductor links 
and the solid conductor tree branches (Fig. 3). 

Stranded conductor

Tree branch

Link

Solid conductor

str * str sol *sol

Z

V

 
Fig. 1. Electric circuit with a) stranded and b) solid conductors. 

a) b) 
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VI. MATRIX FORMULATION 
 
 The fundamental cutset matrix D  represents the 
incidences of the circuit branches to the fundamental cutsets. 
The fundamental loop matrix B  represents the incidences of 
the circuit branches to the fundamental loops [11]. Each of 
the matrices is partitioned in parts associated with the 
stranded conductors that are links (str), those that are tree 
branches (str*), the solid conductors that are tree branches 
(sol), those that are links (sol*), the independent sources 
(i and v) and the immittance tree branches (T) and links (L). 
Table I shows the equivalences between the SFG and the 
matrix calculus. 
 

TABLE I 
EQUIVALENCE BETWEEN CIRCUIT THEORY, SIGNAL FLOW GRAPH AND 

MATRIX CALCULUS 
Circuit Signal Flow Graph Matrix notation 
KCL current nodes DI = 0  
KVL voltage nodes BV = 0  
BCVR vertical connections V ZI= ; I YV=  
α  eliminate Vstr* , I str*  I D I D Istr* str*,i str*,str str= − −i  
β  eliminate Vsol* Isol*  V B V B Vsol* sol*,v v sol*,sol sol= − −  
γ  eliminate 

Vstr , VL , Isol , IT  
V Z IL L L= ; I Y VT T T=  

 
VII.GRAPH CONTRACTION 

 
 The mentioned way of combining magnetically coupled 
branches with the electric circuit causes three difficulties: 
• stranded conductor tree branches are described by a 

dependent current, 
• solid conductor links are described by a dependent 

voltage and 
• the coupling terms are not symmetric. 
Three operations solve these problems: 
1. Partial cutset transformation 
The precedences while choosing tree branches cause that a 

fundamental cutset associated with a stranded conductor 
tree branch only contains current sources and stranded 
conductors. A partial cutset transformation contracts the 

graph in direction α  (Fig. 3). The current of the stranded 
conductor tree branch is expressed as a combination of 
independent currents and other stranded conductor 
currents (Table I). 

1. Partial loop transformation 
In an analogue way, a fundamental loop associated with a 

solid conductor link only exists of voltage sources and 
solid conductors. A partial loop transformation contracts 
the graph in direction β  (Fig. 3). 

1. Symmetrizing the system 
A contraction of the BCVR (direction γ  in Fig. 3) leads to a 

Compact Signal Flow Graph (Fig. 4). 
Multiplying the circuit loop equations with χ  and the circuit 
cutset equations with −χ  leads to the coupled field-circuit 
matrix 
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where K  is [ ]K Lij ij+ jω  for a time-harmonic field or 

[ ]K Mij ij+  to consider motion, A  is [ ]Aj , 
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Fig. 2. Non-coupled Signal Flow Graph. 
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Fig. 3. Coupled Signal Flow Graph. 
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Fig. 4. Compact Signal Flow Graph. 
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R R B R Dstr
*

str str,str str* str*,str= − * , (9b) 

G G D G Bsol
*

sol sol,sol* sol* sol*,sol= −  and (9c) 

[ ]C I I V V= str L sol T
T , (9d) 
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In the case of a quasi-static problem, K  is complex 
symmetric [9,7]. S  is symmetric because of the property 
B Dx,y y,x= − T  [11] and due to the fact that R str , R str* , 

G sol , G sol* , Z L  and YT  are diagonals. 
 

VIII.NUMERICAL EXAMPLES 
 
 Two eddy current problems are presented. A conducting 
plane is moving between two inductors (Fig. 5). The 
conductors are connected as in Fig. 1. In the second example 
an induction machine operated under load (Fig. 6) is 
connected to the circuit of Fig. 7 [6]. The numbers of 
additional circuit equations of the different methods are 
collected in Table II. 
 

TABLE  II 
NUMBER OF CIRCUIT EQUATIONS 

  Circuit Analysis Tableau MNA CMNA SFG 
  Inductor 13 5 4 2 
  Induction motor 166 46 43 31 

 
IX. CONCLUSION 

 
 The Signal Flow Graph method offers a general and robust 
way to couple a lumped parameter model to a finite element 
model. The method adds a minimal amount of extra equations 
to the system matrix. Both, the stranded and solid conductors, 
arbitrarily connected in the network, fit in the description. 
Matrix symmetry is retained. This graph method is easily 
extended to non-linear circuits and circuits with dependent 
sources. An appropriate modellization of such circuits 
coupled with a transient FEM is in investigation. 
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Fig. 5. Equipotential plot of an inductor and a conducting 
plane moving at 10 m/s to the right. 

Fig. 6. Flux line plot of the time-harmonic 50 Hz solution of a loaded 
induction motor. 
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Fig. 7. Electric circuit of a) the stator and b) of the rotor of an induction 
motor. 
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