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Abstract—Nowadays, numerical optimization in combination 

with finite element (FE) analysis plays an important role in the 
design of electromagnetic devices. To apply any kind of 
optimization algorithm, a parametric description of the FE 
problem is required and the optimization task must be 
formulated. Most optimization tasks described in the literature, 
feature either special developed algorithms for a specific 
optimization task, or extensions to standard finite element 
packages. Here a 2D parametric FE environment is presented, 
which is designed to be best suited for numerical optimization 
while maintaining its general applicability. Attention is paid to 
the symbolic description of the model, minimized computation 
time and the user friendly definition of the optimization task.  

 
Index terms—optimization methods, finite element 

methods, software design/development 
 

I. INTRODUCTION 
 
The finite element analysis is widely accepted for its 

general application range regarding geometry and problem 
type (electromagnetic, thermal, motion, coupled problems). 
This makes it a desirable tool for the optimization of 
electromagnetic devices, regardless of its computational 
expense [1]. An optimization problem is formulated by 
defining an objective (quality) function with a number of 
design parameters as the variables. The purpose of an 
optimization is to find the best possible solution to a given 
problem by the simultaneous variation of the design variables. 
This requires many objective function evaluations. Two main 
streams in the combination of FE analysis with different 
optimization algorithms can be pointed out:  

 
• the development of computer codes that are designed to 

solve a specific optimization problem as efficient as 
possible (accepting the loss of the general applicability 
range of the final code) [2], 

• the development of add-on tools to standard finite element 
packages that are originally not designed to perform 
repetitive analyses [3]. 

 
This paper focuses on the development of the 2D FE code 
OLYMPOS, which is user-friendly, optimized for repetitive 
analysis while still offering the general application range. 
OLYMPOS solves electrostatic, magnetotstatic, thermal, time-

harmonic and motion problems in 2D. 
 
II. SYMBOLIC DESCRIPTION OF FINITE ELEMENT MODELS 

 
To allow a repetitive analysis of a FE problem, a thorough 

symbolic description is a pre-requisite. Geometry, excitations 
as well as material data are defined symbolically during the 
first and only interactive pre-processing (fig. 1). This 
interactive session is fundamentally different from the 
completely automatic pre-processing invoked during an 
optimization or parameter variation. In the interactive session, 
the user defines the model symbolically, while this definition 
is only updated and translated during the automatic pre-
processing. This update (changing of parameter values), 
could be caused by either a parameter variation loop, an 
optimization algorithm or the user. No additional preparation 
is required to perform either of the three tasks. All 
parametrization in OLYMPOS is based upon a ordered list of 
parameters, defined interactively by the user in the pre-
processor (fig. 2). A subset may later be chosen as the design 
variables in an optimization task. This list may contain 
dependent or independent parameters. The dependent 
parameters are defined by a symbolic expression, that may 
contain previously listed parameters.

The syntax of these definitions is Matlab-like, entered by 
the user or via macro-commands. Thorough parametrization 
in terms of FE analysis includes the possible symbolic 
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Fig. 1. Schematic of relative times for interactive and automatic FEM 

analysis runs. 
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-name---|----formulation--------
angle 5
phase 30.0

current 11
curr1 current*sqrt(2)*cos(rad(phase+2*angle))

 
Fig. 2. Ordered list of parameters. An unlimited number of dependent or 

independent parameters are defined symbolically.  
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description of  boundary conditions, external electric circuits, 
initial discretization on geometrical boundaries, parameter 
consistency checks, solver settings and post-processor 
computations. The parametrization of the model is only the 
first step during the set-up of an optimization task. Model or 
optimization constraints have to be specified as well. 
Depending on the type of constraint, this might be 
implemented using the penalty method (fig. 3), or if a 
violation of constraint cannot be permitted, via rejection of 
the model (fig. 4). The value of the penalty term is added to 
the value of the objective function in case of an optimization 
run. The execution of a regular analysis or parameter 
variation analysis is not influenced. A violation of the model 
constraints however, leads to the rejection of the model or the 
stop of the analysis. The definition of constraints and 
penalties  is also based upon the ordered list of parameters. 

The variety of optimization tasks is not only characterized 
by their problem types, geometries, excitations and 
constraints, but also by the different analysis steps that are 
required to investigate the specific problem. In OLYMPOS, a 
special feature is the definition of named analysis procedures 
(fig. 5), that define the sequence of steps towards the desired 
result in case of a non-standard analysis. The concept is 
similar to a system command batch. But here, the set of 
commands can include a mixture of pre-processor actions and 
bi-directional communication between the pre-processor (and 
optimization controller) and any other program. Weak 
coupled problems, such as time-harmonic/thermal can be 
defined. The symbolic problem and analysis description is 
stored in ASCII format. This allows access to all information 
if it is intended to link other routines or codes into the 
analysis process (e.g. specialized post-processor tools). The 
problem file does not contain information about the FE nodes, 
elements etc. This ensures low storage requirements. The 
approach inherits another advantage: the management and 
organization of different projects is simplified, as all project 
data are concentrated in one ASCII-file, and different analysis 
tasks are defined once, to be available and repeatable at any 
time. Application specific shells (as available for standard 
FE-packages) can be replaced by application specific analysis 
procedures.  

 
III. ACCELERATION OF THE FINITE ELEMENT ANALYSIS 

 
Mesh generation and solution process are automated. The 

accuracy and rate of convergence of the FE analysis are 
strongly depending on the discretization of the model and the 
appropriate solution algorithm of the system of equations.  

 
Mesh generation and problem translation 
 
Fast and reliable mesh generation is a key requirement 

when linking FE analysis and numerical optimization. During 
the development of OLYMPOS, the choice was made to 
implement a fast but minimum Delaunay triangulation 
(fig. 6). This choice requires a fast and reliable adaptive 
refinement algorithm to be implemented in the solver 
modules. In an automatic execution of a named analysis 
procedure, the obvious first step after changing the value of a 
parameter is saving the updated symbolic description of the 
model. In the second step, a triangulation of the model 
geometry is constructed. These steps could be called the 
translation of the symbolic description of the geometry into a 
numerically fixed discretization for this particular design. The 
most convenient and time-saving approach is to link this step 
with the translation of the symbolic problem description into 
the data structures based upon the newly constructed 
discretization. All data in the parametrized problem & sketch 
file are treated initially as a symbolic expression. A parser 
evaluates the expressions during the input stage. Most data 
are immediately stored in their numeric form. Parsing is 
rather time consuming, which leads to the fact that the parsing 
operations usually requires most of the execution time of a 
single pre-processing run (see table I and II).  

BEGIN PENALTY
((p1<=0.1)||(p1>3.5)) exp(abs((p1-1.5)/1.5))
p2>2e-3 3.0
END PENALTY

Fig. 3. Example of two penalty expression, consisting of the logic 
expression followed by the function value to add if  this expression is TRUE. 

BEGIN MODEL CONSTRAINTS CHECK
lb1>=1.0
lb1<=5.0
((lb3<1.0)||(lb3>0.0)&&(sin(rad(angle))<0.5))
((ra-lb2)^2)>((sm/2)^2+(ra-lv)^2)
END MODEL CONSTRAINTS CHECK

 
Fig. 4. Example of the syntax for the definition of model constraints, as 

they are stored in the parametrized model and sketch  file (PSK-file).  

PROCEDURE TORQ
6
1 save
2 meshprob -nd PROJ1.PSK
3 arachne -nd PROJ1.
4 cp PROJ1.MX MAXWELL.DAT
5 maxwell -nd SOLU.TXT PROJ1.PSK
6 extract data

 
Fig. 5. Example of named analysis procedure (TORQ) as it is stored in 

the PSK-file. There is no implemented limit in the number of procedures, or 
steps in a procedure. In this case, the updated model is saved (PROJ1.PSK), 
the mesh generated, the problem translated, solved and a  force computation 
is performed. Finally, the results are read into the pre-processor. 

Fig. 6. Initial Discretization of a permanent magnet machine due to 
two different sets of design parameters. Model a) includes 1737 nodes, 
3334 elements, total automatic pre-processing time 1.07 s on a HP C160. 
Model b).with 5 parameters changed (magnet width, height and burry 
depth, iron bridge length, rotor angle), requires 1.04 s for 1665 nodes and 
3214 elements. 

a) b) 
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The input for the triangulation algorithm [4] is a planar 
straight line graph (PSLG), which is a non-ordered list of 
vertices and segments. This PSLG is built from the symbolic 
description of the geometry, including the parametrized 
information for the subdivisions along the lines. Each 
primitive is converted into a list of segments, depending on 
the number of subdivisions applied. The list of segments is in 
fact the list of element edges along geometrical primitives. 
The triangulation, constructed using the divide-and-conquer 
method in the implementation described by [4], has a runtime 
of O(n log n). This is a pre-requisite for the desired speed of 
the full analysis. This algorithm is very robust, which is 
supported by the organization of the data sets and the use of 
exact arithmetic. However, not all the PSLG-segments will be 
represented in this first triangulation. The remaining segments 
have to be inserted in a following step, leading to the 
constrained Delaunay triangulation which is the initial 
discretization taken for OLYMPOS.  

Region labels are assigned using a kind of "virus 
spreading"-algorithm, which does not require any prior 
knowledge about the construction of closed regions. The 
initial triangulation can be followed by a first (geometrical) 
refinement step. Finally, a second step of the translation of 

the symbolic problem description is required, as some 
information is only available after the mesh generation : 

 
•  the connectivity of the paired constraints, 
•  the exact cross section of the regions, 
•  most excitations are transformed from their integral 

value into densities, 
•  special types of boundary conditions must be prepared 

(e.g. cuts). 
 
This final step of translation if followed by the saving of 

the finite element data set. The FE-problem file contains an 
discretized representation of the symbolic description defined 
by the present value of the set of parameters. It is often 
impossible to determine a good discretization of the model 
before starting the optimization, as the optimized shape of the 
device can be totally different. A fast and reliable mesh 
refinement, in combination with various a posteriori error 
estimators is implemented in OLYMPOS to control this 
problem.  

 
Mesh Refinement 
 
A sequence of solution and refinement steps is performed 

until the desired accuracy is reached. The error estimators 
based on interpolation theory can be applied for different 
regions in the model. The intersection of the elements is 
followed by a quality enhancement of the discretization. 
Nodes are moved towards the center of gravity of the 
surrounding nodes and a local Delaunay edge swapping 
algorithm is applied. This assures an average aspect ratio of 
the elements close to unity (typical < 1.2) in the final 
discretization. Particular attention is paid to fast refinement 
algorithms. Error estimation and refinement requires less than 
10% of the overall computation time (fig. 7). 

Solution of the System of Equations 
 
The choice of the appropriate solution algorithm depends 

on the properties of the coefficient matrix, which in term 
depends on the problem type. Several pre-conditioners can be 
combined with either CG (Conjugate Gradient) or BiCG (Bi-
directional Conjugate Gradient): SOR (Successive Over-
Relaxation), SSOR (Symmetric Successive Over-Relaxation), 

Table I*.  
Initial problem translation time for a number of FE-models 

 
nb npara nexp nchar ttrans1 

[s] 
tprep 

[s] 
1 6 21 156 0.03 <0.01 
2 15 27 257 0.03 <0.01 
3 50 55 882 0.42 0.05 
4 13 397 17404 0.64 0.06 
5 0 0 0 0.10 0.47 
6 60 242 11619 1.35 0.03 
7 50 326 17442 1.74 0.04 

• all timings taken on HP C160 
•  

Table II.  
Triangulation, refinement and saving times 

 

nb ttriag 

[s] 
nnod

e 

initial 

nele

m 

initial 

tref 

[s] 
nnod

e 

final 

nele

m 

final 

tsave 

[s] 
tt 

[s] 

1 <0.01 148 214 0.04 361 640 0.03 0.11 
2 <0.01 123 210 0.03 334 632 0.03 0.11 
3 0.08 635 1130 0.16 1737 3334 0.37 1.06 
4 0.07 641 1165 0.16 1779 3441 0.35 1.23 
5 0.19 1464 2890 0.40 4273 8508 0.40 1.46 
6 0.05 461 813 0.11 1248 2387 0.20 1.73 
7 0.08 688 1242 0.18 1913 3692 0.27 2.20 
 
npara - the number of parameters in the ordered list, 
nexp - the number of symbolic expressions, 
nchar - the total number of characters of the symbolic expressions, 
nnode - the number of nodes, 
nelem - the number of elements, 
ttrans1 - the processor time for the data input and initial translation, 
tprep - the processor time for the preparation of the PSLG, including 

  the removal of the duplicate points, 
ttriag - the processor time for the initial triangulation (incl. insertion of   
    outline segments and spreading of region labels) 
tref - the processor time for the first mesh refinement, 
tsave - the processor time for the final translation of the problem and 

  the saving of all data, 
telaps - the elapsed processor time for the automatic pre-processing.  
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Fig. 7. Relative execution times for different steps of the solution 

stage. It must be noted that the time for saving the data is of the same 
order as the time for mesh refinement. 
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IC (Incomplete Cholesky Decomposition) and AMG 
(Algebraic Multigrid). The Algebraic Multigrid pre-
conditioner is especially well suited for very large systems of 
equations, as it reduces the computation time significantly (up 
to 6 times) compared to classical pre-conditioned CG 
methods [5]. After the mesh refinement, all solvers start with 
an interpolated solution at the newly imposed nodes. In a non-
linear analysis, the number of Newton steps can be reduced 
down to 25% of the steps with the initial mesh.  

 
IV. DEFINITION AND EXECUTION OF OPTIMIZATION TASKS 

 
The pre-processor of the FE package provides all tools for 

the set-up of an optimization task. Most optimization 
problems are constrained, often feature multiple objectives 
and are expected to find the global optimum. A variety of 
direct search algorithms (Hooke&Jeeves, evolution strategy, 
genetic algorithms, Simulated Annealing) are chosen, due to 
their simplicity in the preparation of this type of problem [6]. 
New developments in evolutionary algorithms, which 
improve the global convergence speed of the optimization 
such as Differential Evolution [7] support this choice. The 
optimization algorithms are implemented in an external 
optimizer (fig. 8). The three reasons for this separation are: 

 
• Non-FE optimizations are performable. 
• The parallel set-up of the optimization task is simplified. 
• Easy addition of optimization algorithms. 

  
 Based on the symbolic description of the model, the 

named analysis procedures, penalty and model constraints 
checks, the definition of the optimization task is unified. The 
design parameters are selected by their name from the 
ordered list of parameters. While the user defines design 
variables in their physical units, the optimizer requires 
normalized variables. The pre-processor allows to define a 
normalization and de-normalization function for each design 
variable. During the optimization, the design objectives are 
calculated for each intermediate design (local field values, 
forces, inductances, volumes etc.). They have to be combined 
to return a scalar valued quality, describing the acceptance of 
the design in terms of the objectives. As every optimization 
task might involve non-standard calculations, especially 
during the post-processing, a general data transfer algorithm 
is provided. It allows the extraction of data from external 
ASCII files (e.g. LOG-files) into user defined variables inside 
the FE-package. It is now possible to formulate a single 
valued quality function (e.g. weighted sum) in the ordered 
parameter list, using the same syntax as in the definition of 
the model. The execution of the optimization is performed 
either from within a graphical interface, or more efficient in 
background, involving no graphical output. A stand-alone 
program allows to monitor the progress of the optimization at 

run-time. The optimization can safely be stopped and 
restarted at any time. This feature is required, if settings of the 
optimization strategy have to be adjusted in the starting phase 
of an optimization or hardware (network) maintenance 
requires the interruption of the process. 

 
V. CONCLUSION 

 
A powerful 2D FE-package is presented which is tuned for 

numerical optimization. Emphasis is put on the combination 
of various measures to accelerate the FE-analysis, while 
remaining its applicability to different types of field and 
optimization problems. A thorough symbolic description of 
the problem serves as the basis for the optimization of the 
device. The concept of incorporating the definition of the 
analysis procedure into the symbolic description of the model 
inherits the potential of the simple development of application 
specific tools without the need for newly coded shells. 
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Fig. 8: All analysis and optimization steps are defined by the symbolic 
description of the problem. 

 


