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Abstract:  Usclul  ecnergy  conversion in
clectromagnetic energy  transducers  takes pld(,
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techniyues  which have a range of  general
applications  are  used  for the design  and
optimisation of these clectromagncetic devices. To
predict their operational  behaviour. particular
attention has to be paid to the computation of
the air gap values of the {lux densities and the
magnetic leld \Inlnkﬂh Onvome rescarch on

foree computations in clectromagnetic  devices
using  dillerent  approaches  indicates  the
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accurate computation of the field quantities and.
thus. the generated forces in two- and  three-
dimensional iinite- LlLlﬂLl]l modcls. is presented.
Solving a : ]

al Dirichlet problem  analvtically
enhances  the accuracy  of the derived  ficld
quantitics using a numerically LOIH]’)UILL{ polunml
solution. Derivatives uquimd for the values of
the flux density are caleulated  analvtically. in
order to improve their order ol convergence
towards the exact solution. A Fourier series is
used to represent the local field solution of two-
and  tarce-dimensional problems. The paper s
focused on the practical application of the static
clectremagnetic field  solution of the Laplace
cquation m a local post-process. Finite-clement
test models using standard first-order clements
are applied to demonstrate the proposed method.
Advartages and drawbacks are discussed.

1 Introduction

To predict the forces that are the key (o the behaviour
of several classes of  electromagnctic  devices.  the
solution requires the highest possible accuracy. Force
and  field quantities are derivatives of a potential
formulation. The difficulty is owing to the fact that the
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FEM  piccewise approximates the real potential by
simple shape functions. instead ol obtaining the exact
solution [1]. Accounting for this. and assumx 1z a small

value of /1 as the maximum characteristic

finite clement. the FEM is convergent lO\\dld\ the
exact solution of order ¢ — 1. The constant ¢ describes
the [ml\uumml order of the clements used. With € as
the global error. the order of convergence for the
potential solution is

ter of o

ol < - prt! (1)

he size /i ol the cle-
¢ of diseretisation.
]

sy of the

The factor C is independent of
ments and depends only on the
‘hoice of she 1 ;
solution.

Eqn. I identifies the convergence problem transterred
mto the approximation problem. Using iirst-order lin-
car shape functions. the rate of convergence iy of the
order O(r). Deriving the field qumllllu from the
potential formulation numerically vesults in a rate ol‘
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accuracy of one order compared 1o the polumdl solu-
tion. Using these field quantities. this inherent inaccu-
Tacy influcnees the 16511115 of" Torce calculations. This
fact identifies the difficulty in obraining accurate ficld
quantities as a problem ol the order of convergence of
the numerical method used.

By using an adaptively f-refinec FEM discretisation.
the size of /i varies from clemen. to element. In this
case. the order of convergence can be expressed by the
degree of freecdom (DOF) ol the finite clement mesh.
Le. for the [first order shape functions O(r) =
O(DOF ")

To surmount the loss mn accuracy in a fundamental
way. shape functions of higher orders can be used. On
the other hand. this would result in fast increasing
computational expenses. A good  trade-olf between
both considerations is the use of simple and fast lincar
shape functions and ua local. accurate solution obtained
by an analytical formulation. a potential interpolating
function yielding derived ficld quantities ol the same
order of accuracy as the potential solution. When ana-
lysing clectromagnetic devices. often local values of the
ficld quantitics and the forces are of interest. and there-
fore the proposed local solutions do not restrict the
applicability of the analysis.

For the local two-dimensional field problem. the
basic idea is to determine the poential inside a circle
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analytically Tor given potentials applied as the bound-
ary values at its circumference [2, 3], For three-dimen-
stonal field solutions. the local ficld is determined
inside a spherical volume. The boundary values are
supposed to be known from previous computations. In
both ficld approaches. a Fourier series is used as the
potential formulation to obtain an analvtical represen-
tation ol the derivatives inside the circle. or the sphere
This avolds the loss in order of convergence and accu-
racy. Although 0[]101 te hmqu es wuld be us
FEM 15 cmiploy ! on. 1
boundary values of the local field problcm are Lqudll\
distributed along the circumference of the circle or on
the surfice of the sphere. From ihese daia the field vai-
ues in the centre of the circle or the sphere are com-
puted analvtically.
Starting [rom an existing
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» FEM potential solution, the
proposed method describes post-processor operator
applied to the air-gap region of an electromagnctic
device. No restrictions concerning the finite-clement
discretisation are assumed. The proposcd method is
m(h*nmuinm ol the finite-clement mesh

................ of the finit esh mside the
domain. The results converge towards the  values
obtained by the classical cvaluation of the potential
solution. using numerical derivatives. if a very rough
discretisation or unsuitable paramcters are chosen. c.g.
the number of boundary potumal values or the radius
of the loutl field plohlun I'he de ndence of the

field solution th
mussal\ paramelers 1o 1etmg the loml lield problem
Is discussed. and the suitability of the proposed method
s demonstrated by test examples in two and three
dimensions.
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2 Local field solution

For a more accurate force calculation. the aim is to
improve the results of an cxisting field solution by a
local post-process. The idea is 10 solve the Lup‘lucc
equation for the magnetic scalar/vector potential A

). 074 D% 4 .

VA = +,,+ — =0 (2}

da” dy? a:
in source {ree and homogenous arcas, i.c. in the air gap
of an electromagnetic device. starting from an existing
potential solution A, The local field problem is defined
by the known potential values equally distributed along
the circumference of the circle in 2-D or on the surlace
of ¢ sphere in 3-D. taken as the boundary potential
values of the local field problem (Fig. 1). The potential
values are calculated at the centre-point P, of the circle
or tie sphere

a R
Fig. 1  Definition of the arca of the local fiold

o Two-dimensionad problems
b Three-dimensional problems

2.1 General two-dimensional approach
The Laplace equation (eqn. 2) wrtten in polar co-ordi-
nates (r. d) is

K </'i);i> N 16)2.4 "
dr \or 1P
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The idea is to find a i'uncllon representing formally an
inlinite series. in which each term is a solution ol the
partial differential cquation. satisfyving the boundary
values.  Assuming  lincarity and uniformity of  the
Laplace equation and thus applying it to egn. 3 a
Fourier approach. given in [3. 4]. leads 1o the harmonic
function

Al @) = ”)” + \N© 'y, cos(nd) + 5, sin{nd)}
- [
H
with cocllicients
Lo ;
a, = . / AP cos(ndidd
j L e i d b ()
= - R i.D) e smindjdd )]
R ,/,,

The procedure to solve egn. < describes the solution of

Dirichlet problem on a circle with given boundary
vatues at its circumference. Eqn. 5 represents a Fourier
series and the coefficients , and S, can be calculated
using the known potentials 4 = 4(R. &) at the circum-
ference of a circle with radius R.

Now a {inite number of N cqui-angular points is put
on the circumference ol the circle.
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With the & boundary potential values A, known on the
circumference. according to the properties of harmonic

P= DN (6)

functions the first term in eqn. 4 can be written s
] Y"\
(1) -
A‘, 0 — "o T = »1/ ()
_{ A\ pAa——,

The Fourier coefficients are rewritten as

*)

) = “:i’_” 2:1 A cos(nd,)
.) \
5, = N _5’7” E: A sin(nd,) (3)
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With the Fouricr series eqn. 4 and its coelficients egns.
7 and 8. the potential at the centre Py of a circle may
be computed knowing only the boundary potentials,

contour

Fig.2  Atudtiple circlos dewermine the porentials at « coniour

Applying eqn. 4. derivatives at the centre of the circle
can be calculated. To obtain the potential at a given
contour inside a finite clement domain. multiple circles



have to be cvaluated. Overlapping circles guarantice a
continuous solution in the considered region after this
post-processor operation (Fig. 2).

The numerical shape of eqns. 4, 7 and 8 enables an
easy implementation of the procedure in a [linite-cle-
ment program package. Advantageous is the shape of
can. 4. The derivatives at the centre of the circle are
represented by the Fourier coefficients. Theretore no
additional computational effort is required to compute
the derivatives at Py,
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In order o compare the results obtained by the local
field cvaluation with conventionally  obtained ficld

quantitics from first-order clements, Fig. 3, 4 and 3
show the computed vector potential A and the derived

magnetic flux density in direction v ol the Cartesian
co-ordiniate  svstem  with, and  without. using the
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Dirichlet problem. 24 potential boundary values at the
circumterence ol the circle are used.

vector
potential
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Fig. 3 shows the local vector potential of the FEM
solution inside the circular domai. The resulting mag-
netic (Tux density using the classical approach B =
curlA 1s plotted in Fig. 4. For the finite element discre-
tisation [first-order elements were used. It is obvious
that forces computed using this type of solution are not
reliable. In Fig. 5 the local values of the fux density
distribution obtained by solving the described Dirichlet
problem. are plotted. It can be seen that this solution is
continuous and ol the same accuracy when compared
to the solution of the vector potential itself (Fig. 3).
2.2 Second approach for cylindrical
geometries
A sccond method uses the values of the magnetic
veetor potential on two concentrie circles with radii R;
and R, uas boundar iti I field
values on the circul
R, are calculated.

s (Fig 6). 1

ar contour C with radius R, < ;<

Flgﬁ Local Divichler probleny for o cviindical air sap

If the inner radius R, 1s taken as a reference. the gen-
soluti :

on of Lapl s equation s
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The cocellicients «,. by ¢, and . are independenthy
determined for cach cireular harmonic. A fast Fourier
transformation (FFT) algorithm is used to express the
magnetic vector potential at the boundaries as a series
of such circular harmonics
\
MR, Py = Z((I;_, COSLAD) + by, sin(hd))
=
(11a)
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Once the magnetic vector potential at the contour C s
known. the normal and tangential component of the
magnetic Tux density can be determined:
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The lzmgcnlldl force component £, results 1 the torque
7 of the device. It can be shown [4. 3] that the value of
the torque is given by
. \
- 27 o .
| = — (/y‘_(/);,('/, *(l;,(l/ ,)) (I—H
Hao

A
being independent of the radius r of the contour €. It
is not necessary to caleulate the normal and tangential
component of the magnetic flux density on the contour
resulting in a faster algorithm, when the overall torgue
s wimed at. The proposed method can casily be
>nded 10 time- hanmomu problems. 1If all values are
ns-values the torque is obtained by adding the torque

calculated using the real- and the imaginarv-component
ol the solution.
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The local t cli problem is now defined by the known
potential values equally distributed

the uoui..mn;\ potential
(Fig. 1h). According to the

2.3 Three-dimensional approac

imed to be th I values
of the loml field problem
co-crdinate transformation

L= sinf coso

¢ = rsinfsir o

T =cosf (16)
and a spherical co-ordinate svstem is applied (Fig. 7).

Using the Laplace eqn. 2 with the transformation

cgn. 16 vields

Lo < L 0Ad (R R
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= dr . dr sinf o . oo ,
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Applying the theorem of the separation of the variables

Atro 0.0y = Ry - ©(6) - Do) to eqn. 17. a general

form ol the tunctions R(r). ©(6) and d(¢) depending on

the potential o can be written. FEvery solution of the
Laplace eqn. 17. being (inite for all 6. is a solution of

At looy = (ar F b “)P,‘i”((‘()hﬁ)

“tacos o+ st mo) (18)

where m = O(l)ee. 1 = mi(lyeo. a. h. ¢ and B are con-
stants and P is the associated Legendre polvnomial

along the surface of

ol the first kind. To simplity the notations. the surface

harmonics
Corn = PV {cesB) - coxmo

Spn = DPMcosf) - sinomo (19)

rig. Splierical co-ordinare svsiem
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are introduced. Assuming eqn. 18 to be a linear form.
the potential in the origin s llnltc The constants
o )y oand B () oar : :
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s a solution of eqn. 17. IHere. the magnetic scalar
potential A iy complclcl\' derermined by the constants
Py and ¢, The aim is (o caleulate the nm"mm fTux
density at a point using known scalar POl 1

in its \'icinil}. (onsuluunl_\, a spherical volume \\11h
known boundzn‘_\' potentials at its surface around this
field point is chosen to determine the field. The known
boundary potentials result from a previously performed
FEM computation and determine @Il constants  in
eqn. 20. To calculate the magnetic ficld quantitics at
the centre of the spherical volume. the Laplace
equation has to be solved locally and spherically
around this ficld point with radius » = R The
boundary potential values are available onlv as single
values at the surface of the sphere. To distribute them
equally along this surface. the spherical co-ordinates ¢
are divided into J and 6 giving K equal angles A¢ and
A6, respectively.

27 = E: Ao
-
IN

T = ;AH (21
o

In order to satisfy eqn. 20 accurately. the number of /
and K must be sulficiently large. On the other hand.
large numbers rapidly increase the computational
expenses. With respect to the computation time and
accuracy a good compromise has to be found. Practical
values for ./ and K are given in the following Scction.
Assuming @ and 6 arc the co-ordinates in the locul
system with the interesting lield point at the centre of
the sphere. the coefficients P, and ¢, , can be
determined by a Legendre decomposition using the



boundary potential values:
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Retaining the local co-ordinate system in (7, 17, =), the
magnetic [Tux density in the original global co-ordinate

Syt 1w
SVHLLTIE 1>

B B B /94 04 4N (230}
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Calculating the derivatives at the origin of the local co-
ordinate system (Fig. 7). using & = w2 and ¢ = 0 in

egn. 20, vields

a1} O .

A =~y (21)
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Analogous to eqn. 24, the derivatives i v are found by
taking 8 = ¢ = m2 and in = by taking 0 = 0 and ¢ =
n 2 i eqn. 200 With respect to eqn. 24, applying
eqn. 235 Lo eqn. 20 by using egn. 22 and with the

Legendre terms
P;’(('()HH) = cosf
Pll (cosf) = sinf (25

the components of the (tux density at the centre of a
sphere are explicitly rewritten as
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Using this local field approach con. 26, by arranging
multiple overlapping spheres at an arbitrary surface or
contour (Fig. 8). it is possible to obtain the required
local field quantities at this surface with the same accu-
racy as before by FEM-computed potential values. The
tetrahedron shown in Fig. & reprosents a part of the
three-dimensional mesh of the FEM domain
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Fig.9 /iux densiey distribution B- on the front surface of 17 see Fig
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Iy computed using the new proposed post=processor method
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Three-dimensional FEM model of the wese example

From Figs. 9 and 10 the difference between the direet
cvaluation of the potential and the new post-process
operator is shown. Here B is computed for a test
example (Fig. 11) at the front surface of T facing the
permancent magnet cube. It is obvious that lincar shape
functions. approximating the scalar potential. are



resulting in a piecewise constant flux density distribu-
lion (Fig. 9. Computed forces starting from this type
of solution arc unreliable. The local values of B- plot-
ted in Tig. 10 show the expected continuous distribu-
tion computed using the new post-processor method.

3 Test examples

3.1 Two-dimensional problems
First methed: The method introduced is applied to a
maanctostatic field problem. Computations arc per-
formed using a test example consisting o a diametri-
cally, magnetised circular permanent magnet and o
ferromagnetic back iron voke (Fig. 12). With very
derse mesh (Fig. 12¢) and using egn. 2 an accurate Tux
5
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Lry. the elobal force has to be zcro. In Fig. 12h t
corputed flux-density distribution is plotted. Owing to
the magnetisation direction of the permanent magnet.
an angularly sinusoidal normal component of the flux
dersity distribution inside the air gap is cxpected.
sing the focal solution. computations are pertormed
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of the individual local circles is taken to be half the air-
gap length. Owing to the high discretisation of the
finite clement domain (Fig. 124) a4 good agreement
between the results obtained by the direct derivation
eqrs. 2 and 415 found [4].

permanent

back iron magnet

a b \\_/ “Nair gap
Fig.12 1 £M diseretisaiion flux plor of il 2-D test oxample
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Fig. 13 Comparison of the product B, - B, versus angular position. com-
patcd ar the median contour i the air cap wing both methods

To compute the force by integrating the Maxwell
stress tensor along the median contour in the air gap.

the product of normal- and tangential-components of

the  flux  density 1s necessarv.  Applying  both
approaches. the product B, - B, is calculated (Fig. 13).

The values obtained by the conventional post-proces-
sor show large deviations around the values computed
by the local post-processor approach. To obtain accu-
rate results by applyving the local post-processor

approach. the radius of the circles must be as large us
possible and larger than the mesh size. This ensures an
increased accuracy of the results compared to the con-
ventional post-processor. Using a less dense linite-cle-
ment mesh for the local post-processor approach
converges  towards the same  solution-accuracy  as
obtained by the conventional post-processor method.
Second method: A typical example ol a rotating
machine with a small air gap is a squirrel cage induc-
tion machine. To deal with the non-lincarity of the iron
and the induced currents in the rotor. a non-lincar
time-harmonic solution is required [6]. Fig. 14 shows
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induction machine with 36 stator slots and 28 rotor
bars. The air gap consists of 3 layers of clements.
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Fig. 15 shows the variation of the torque for a vary-
ing radwus r of a circular covtour in the air gap of the
induction machine. 1024 peints are cequidistantly dis-
tributed along the contour. The dashed line is the result
applying the Maxwell stress mcethod classically, The
lirst contour 1s placed in the middle of the first laver of
elements 1 the air gap. the last one in the middle of
the third laver. The solid line is the result ol the
Laplace based torque calculation. The result is symmet-
rical because two contours are needed to caleulate the
value ol the resulting torque of the machine. Fig. |
shows that the conventional Maxwell stress method
strongly depends on the place of the contour nside the
air gap. while the Laplace-based method gives similar
values for the torque as long as both contours are
placed i the middle layer o " elements. Furthermore. it
15 found that the conventional Maxwell stress method
Is sensittve to the uniformity of the fmite elements in
the air gap. Uniformity results in a symmetrical torque
radius characteristic.

Mecasurcments on a 400V:50Hz induction machine
show very good agreement with the computed data [6].

o

3.2 Three-dimensionai problems

To demonstrate the suitability and accuracy of the pro-
posed method nto computing local field values and
forces. an example including non-linear solt magnetic



and permanent magnet materiad s chosen. The st
arrangement is svmmetrical 1o its foree axis, so u zero
resulting foree is the theoretically correct solution. The
conliguration consists ol a cubic permuanent 1.mgm1 n
the central posttion between two ferromagnetic blocks.

Fig. 11 shows the test arrungement. including the inte-
eration surface Toused o compute the overall foree
pulling the permanent magnet cube towards the iron
blocks. The magnet is magnetised i the —-direction.

The choice of m xplmL parameters and the number of\
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RIS G the arbi-
lral ‘_\ sphere J nd I\ are obtiined by cest caleututions,
Forces are computed using the Maxwe!l stress tensor,
in 'r'ig. 16 the foree I PUIIIH” the permunent magnet
to one ol the ron blocks s plotted. The foree s com-

f

puted ondy at the front surface ot 17 (Fig. Therefore
the resulting foree is not zero. Applying dllluun num-
s oyt 7 — L0 o1k ql«,.‘
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As well as the question ol fixing suitable numbers for
Joand Koo osecond one rises: how many spheres. e
arbitrary field points mside 17 are required to obtain
the complete mformation out of the potential solution
represent ng the accurate overadl field distribution for
the force computations: For this purpose the density D
13 defined. Fach side of the cubie surface T is now sub-
divided mtwo an array of D times 1 cquidistunt points.
In this example. the sphere diameters are set to 0.02m
(2" ol the characteristic length of T). Using the field
values at the points. the Maxwell stress tensor s
applied to obtain the overall foree of the test example.
Fig. 17 indicates that a density of D - 20 s suificient

Lo represent the total foree aecurately, Wher compared
to the Torce pulling at cach side of the magnet cube
thres ton the remaimmye naccuracy s less than 0.7
referred 1o the masmium Toree. Using the classical
direct derivation of the potentinls to compute  the
Forees. a0 T higher density is necessary o obtain the
same mformation. In addition. usiag the new proposed
post-processor operator. the forcee converges towards a
stable value (12 1710 Owing 1o the piccewise constant
Mux density distnbution, the values of the total foree
by the clissical approach oscillete and do
not comerge towards w stable and rehable solution
(e 17y Studies regarding the computational efforts
required to obtain the full ficld mformation from the
potential solution show that with /)l,u,h,,,l,,, -/),';m g

N.othe computation time ol the classical method is
shightly Jess compared to the new approach. Neverthe-
fesss the advantage of the new post-process operator
supphving the user with a stable and reliable solution
makes this method preferable to the classical one. cven
i the computational costs are higher,
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In o TN the quadratic convergence. referred to the
characteristic length 7 ot o finite clement. of the FEM
potentid solvtion, and the rate o7 convergencee ol the
lorce computations usig both e classical and the
new  post-processing approach. i plotted versus the
number ot wirahedron eleme licate
the theoretical gradient of convergence (egn. 1), The
refinement of the three-dimensional discretisation is
performed o such o way that the clements are of the
same shape moevery FEM model in order 1o obtain a
reaudarly distributed mesh for all cases. To compute the
total foree. the Manwell stress tensor Iy used. inteerat-
ing the foree density caleulated in points cquidistanthy
distributed by the density 2 on a'l sixosides of T For
the classicad approach. a density = 40 is chosen. and
i the case of the new method. D isoset o 7. The sphere
parameters are J < A~ IS0 The nitegration surface of
the foree computations is focated 11 such @ way that no
plane of T cuts through the nodes of the FEM mesh. Tt
nodes are comading with the points ol the foree com-
putation using the classical post-processor approach.
this would result in o larger error owing to the trouble-
some definition of normal and tangential Gield compo-
nents ina node of an element. The gradient triangles in
Froo IN indicate the theoretical rate ol convergence for
the quadriate and the lincar convergence case. 1t can be
seen. as theoretcaliv expected. tha: the relatve error in




an cnergy norm ol the FEM potential solution con-
verges quadratically. referred 1o the specilic diameter /
ol the elements (see eqn. 1} by increasing the number
of first-order tetrahedron elements. Owing o the ana-
Iytically desceribed potential Tunction inside the local
ficld volumes. the resulting overall foree using this
aprroach is of the same order of convergence. There-
fore no loss ol accuracy of the derived field quantities
oceurs. The convergence of the total forces. computed
by the classical approach. indicaies the expected lincar
Imhnmm The accur: acy of the computed values is
mﬂuuuul by the numerically  obtained derivatives.
s shows that thg results obtained by the classical
! in v inaccurate when compared to
the accuracy of the potential solution.

2
l potential solution O{h )

1V
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Fourier approach

problem

g

2(h) field quan

; -flux densny

Jisld stranath
diela strength

+flux

v/

force computation:

- Maxwell stress tensor
+virtual displacement

- other methods

Fig 19 thduional siep during posi-processing 1o enhunce the acenracy
of derived ticld quaniities

4 Implementation

The use of the new }11\!}1\1&\1 imcthods 1o enhance the
accuracy ol computed field quantities. starting [rom an
existing potential solution. demands an additional step
during the  post-processing  of the FEM  analysis
(Fig. 191 Having obtained an FEM potential solution.
the user only has to define the surface of integration T
on which the field quantities or forces have to be calcu-
lated. This is per [onmd by defining single planes in the
air vap ol the three-dimensional FEM model. Delining
an arbitrary contour allows the computation of field
quantitics or forces along it as well. For cach plane or
contour. the density D, the sphere parameter J. K and
the radius R have to be set. The sphere parameters are
pronlem dependant and related to the geometry of the
deviees e the air-gap width, The planes or contours
should be centred in the air gap. A suitable value for

the diameter of the single spheres is about 90-93%, of

the air-gap width in order to have as many tetrahedron
finite elements inside the sphere as possible. Including
onlv one finite element in the sphere results in no
enhuancement in accuracy ol the derived quantity. To
ensure i continuous field solution. the density ) should
be chosen in such o way that the spheres overlap
(Fig. 8). For the distance between two points on the
surface ol integriation. it is suitable to choose the radius
of the sphere.

To define the number and position of boundary
potential values distributed on the surface of cach

sphere. the parameters J and A have o be chosen. To
cnsure uniformly distributec boundary valucs J is set
equal to AL In accordance with the results of Fig. 17
and other test caleulations. a number J = K — [10 .. 20)]
is sulficient to meet the ratio between computational
costs and accuracy. Fig. 20 illustrates by different J =
K the position and number HI" the boundary potentials
to approximate the local ficld inside a sphere.

Fig.20
=

5 Conclusions

he Hocal solution of the Laplace cqn. 2 inside ihe air
gup ol an clectromagnetic device. using a Fourier series
approximation as the potential function. results i a
significant increase in accuracy ol the derived field

quantitics. Inherenthy naccurate solutions obtained b
numerically derived field values are caused by the loss
ol one order of rate of convereence when the derived
quantitics are compared 1o the potential solution. This
problem occurs 1 two- ard  three-dimensional field
problems. A solution for the 2-D and 3
discussed. The basic idea of solving a r)lllkl.l\, problem

i a local post-processor is introduced. This method

3-D problems is

describes o technique 1o enhance the accuracy of
dertved field quantties. e, field values and forees.
derived from a potential solution. Here. a finite cle-
ment solution applving stardard lincar 2-D triangles
and 3-1 tetrahedrons is used. Solving a local Dirichile
problem inside w cirele in 2= or a sphere in 3-D ana-
Ivtically. enhances the accuracy of the derived field
quammu of a finite element model. Fourier series e

1~

used o represent the potential function of the Towdl
ficld problem. Necessary parameters are introduced
and suitable numbers are given. With this approach. it
v shown that the rate of convergence lor the field solu-
tion is the same as that of the FEM potential solution
itself. Two- and three-dimensional FEM test examples
mncluding permanent magnet material demonstrate the
behaviour of the proposed methods. Results for local
field values and forces point out their suitability. The
comparison of computed lorees using the clussical post-
processor approach and the new post-process operator
show the advantage regarding both accuracy and stu-
bility of solutions obtained by the proposed method.

In combination with lowcer-order finite clements, a
local solution of Laplace’s equation results in more
accurate local field values for a given computation
tme. A higher accuracy  or force und torque s
obtained using these field values in the Maxwell stross
method.
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