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Abstract This paper discusses the use of a complex-valued reluctivity tensor for modeling
non-linear, anisotropic and hysteretic materials in a time-harmonic finite element contexl. It s
shown how these problems can be solved by the Newton-Raphson method. The method is applied
for the simulation of the magnetic field distribution in a three-phase transformer.

1. Time-harmonic finite element method

The time-harmonic finite element method allows to simulate the steady-state
behaviour of devices that are excited by sinusoidally varying currents. The governing
equation of a two-dimensional time-harmonic problem is

V-(¥'VA) — jowA = -], ¢))

, Vyy  “Vnx
v= —Vy Vi @

is a matrix containing the entries of the reluctivity tensor_» [Am/Vs], o the electric
conductivity [A/Vm], w the pulsation frequency [rad/s], A the z-component of the
magnetic vector potential [Vs/m] and J the z-component of the applied current sources
[A/m?). A and ] are phasors and are represented by complex numbers. The
instantaneous value of the vector potential in time-domain is determined by

where

A@) = R{Ae}. BRE)

The piecewise continuous approximation of the magnetic vector potential over the
finite element mesh writes

A,y =D Aigitx,), @
=1
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where 7 is the number of nodes in the mesh and ¢; is the shape function in node ¢ of
the mesh. After applying the Galerkin approach, one finally ends up with a system of
algebraic equations:

f(A) = KA)+/L)A-T=0, 5)

where A is the solution vector, T the source vector, ¥ the residual vector, K the stiffness
matrix and L the eddy-current matrix. The non-linearity of the problem is due to the

dependency of K on A, via the reluctivity tensor.

2. Reluctivity tensor

In a time-harmonic context, non-linear, anisotropic and hysteretic behaviour
can be modelled by a complex-valued reluctivity tensor (Birkfeld, 1997, 1998). This
complex-valued tensor representation is a generalisation of the complex-valued
reluctivity scalar used in Lederer and Kost (1998) and Niemenmaa (1988). If v is
considered in its principal coordinate system (Nye, 1985), it is a diagonal tensor whose
entries equal ¥4 and wg, respectively[1]. Hence:

_ Hrd va O Brd 6
e )= Vo wallBg ) )
with H = Hrd_érd + Fltdétd the field strength [A/m] and B= Brd—érd + Btd—étd the flux

density [Vs/m?]. Since the x and y components of H and B are phasors, H(¢) and E(t)
describe an elliptical locus in space.

2.1 Polar tensor representation
By representing the tensor entries in a polar form, ie.

Vea = | alei®se, )

vd = |mg ]ejatd ) ®

gl 0 \ [l 0\ o
L0 dwd J\ 0 g ) ©)

The moduli |»,4| and |vgl basically determine the anisotropic behaviour, while the
arguments a;q and ayq yield a phase lag between the field and the flux density.
To illustrate the meaning of this, a rotating flux density, e.g.

it follows that

By =B, - (10)

By = —jB, (11)

is applied to a linear anisotropic material for which |14l = 4|val. The field strength
locus,
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Figure 1.,

Elliptical H-loci obtained
gvhen applying a circular
Blocus to a linear
anisotropic material,
represented by a complex
reluctivity tensor for
which |yql=4 [Vel,

O d= Qg= 0° (SOlid),

Qra= g=30°
(dashdotted), a,a=45° and
arg=30° (dashed)

Figure 2.

Geometrieal angle _(.S(t)
between H(t) and B(t),
when applying a circular
B-locus to a linear
anisotropic material,
represented by a complex
reluctivity tensor for
which |vgl=4lw4l,

Ay d= Qpg= 0° (SOlid),

arg= ayg=30°
(dashdotted), a,q=45° and
o= 30° (dashed)

Ht) = R{vBe/'}, (12)
is shown in Figure 1. The instantaneous geometric angle 8(f) between ﬁ(t) and B(t) is
shown in Figure 2. These figures reveal some important properties:

* if aryg = ayg, the H-locus is not oblique (Figure 1);

« in general, B and H are not parallel to each other, except when B aligns with one
of the principal axes of the H-locus (Figure 1);

 if ;g = g = «a, the direction of H depends on the value of a (Figure 1); and

o if apqg = ag = 0, the average value of 8(f) is zero. The total loss

2m 21
Py = / Hab= | H,dB,+ | H,dB, (13)
wt= wt=0 wt=0

is zero as well (Figure 2).
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o If Q4 = Qg €]0°,180°[ or a;q # ayq € [0°,180°], the average value of 6(¢) is
positive, resulting in a positive total loss (Figure 2).

As a consequence, a complex-valued reluctivity tensor allows to model the losses
caused by simultaneously alternating and rotating fluxes, though in a simplified way
(Birkfeld, 1998). If |114| = |mgl and ;g = ayg € [0°, 180°], the reluctivity tensor may
be replaced by a complex-valued scalar reluctivity, which models a simplified form of
alternating hysteresis (Lederer and Kost, 1998).

2.2 Cartesian tensor representation
By representing the reluctivity tensor components in cartesian form, ie.

Vid = Vg +jVir’é‘, 14)
V4 = Vig +jvitg’, 15)
it follows that:
v 0 (v 0

Since K depends on v, the entries of K may be complex-valued. By splitting up K in its
real and imaginary part,

K = K®+ /K™, (17
the system of equation (5) becomes

#A) = [K™(A) + L + K™ANJA - T = 0. (18)

2.3 Material data . .

Birkfeld (1998), described how v, v™, vi§ and v{f can be determined from
measurements in the rolling and transverse direction of grain-oriented silicon steels, by
processing the measured signals in frequency domain. Obviously, the results depend
on the shape of the exciting B-locus. }

For a circular B-locus, these reluctivity tensor components are shown in Figure 3 as
a function of the magnitude of B. The measurements have been performed at 50 Hz on
a square grain-oriented silicon steel sheet M111-35N of 80 mm length and 0.35 mm
thickness (Beckley, 2000). For ease of notation, #/;™ denotes both »§ and »]§'. The
solid and dashed lines correspond to the real and imaginary tensor component,
respectively.

The golar equivalent of this figure, describing the dependency of | vql, |al, g and
g 0N |Blmax, is shown in Figure 4. Here, the solid and dashed lines correspond to the
rolling and transverse direction, respectively. The moduli in this figure reveal the
obvious result that the rolling direction is easier to magnetise than the transverse
direction. Moreover, the elliptic H-locus has its principal axes close to the rolling and
transverse direction, because arg = arg. The fact that they both differ from zero
implies that the material is not lossless.
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Figure 3.

Reluctivity tensor entries
v’ (top, solid),

viq (top, dashed),

vi$ (bottom, solid) and
v (bottom, dashed) as a
function of the magnitude
B of a circular flux density
(Birkfeld, 1998)

Figure 4.

Reluctivity tensor entries

| val (top, solid), |mal (top,
dashed), a4 (bottom, solid)
and ayq (bottom, dashed)
as a function of the
magnitude B of a circular
flux density

(Birkfeld, 1998)
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3. Newton-Raphson method

It is possible to solve equation (18) numerically by successive substitution. The
conjugate orthogonal conjugate gradient (COCG) method can be used for this purpose,
since the complex-valued system is symmetric. Simulation time can be significantly
decreased by considering derivative information of the reluctivity tensor entries as
well, to yield the Newton-Raphson method. However, this requires a special treatment.
The basic idea behind the Newton-Raphson algorithm is to set the first-order Taylor
series expansion of the residual #(A) to zero. However, when working with complex



variables, the Taylor series expansion is only defined if the residual is an analytic
function of A, i.e. the Cauchy-Riemann condition
ofF 1 oF

—=re . Jo
0A, J aALm

(19)

must be fulfilled. Unfortunately, in non-linear magnetodynamic problems, this is
generally not the case (Lederer et al., 1996).

Consequently, in order to obtain a Newton-Raphson scheme, one has to derive the
Jacobian from the equivalent real representation of ¥, defined by

f.re
r= ( i ) . (20)
F

By setting
D K¢ —@L+K™ ”
- L+ Kim Kre ’ D)
Are v
A= . |, 22
(A,m) @)
T T 23)
={ im )

it follows that

r(A) = D(A)A — T. (24)

The (27 X 2x) matrix D has real-valued entries, but it is non-symmetric. The (2n X 1)
vectors r, A and T have real-valued entries. Setting the first-order Taylor expansion of
r to zero,

r(A+d) = r(A)+JA)d =0, (25)

with J the Jacobian of r, yields a direction r along which a line search is performed in
order to determine a new approximation. Elaborating J on the level of a single linear
finite element yields

J©O = DO 4+ M© + N(e), (26)

~ . T
) Ae© Are©
© — (e) ©
M® = KQ : ( Aim@ |\ Aim© P (27)

with
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Figure 5.

Flux line distributions
obtained with the
complex-valued
time-harmonic
anisotropy model

9 [ —Aim(e) Are®© T
© — 2R® ©

v =2 () () P e

b.

1 )
P 4A(z )(CJ> 29)
Qo =L (b ) (" 30
i =% ) G| (30)
k(e)_ 1 (b~ C.)dV'im bi 31
5~ 4A\N T ) TdBZ \ g )’ ©1)
where A is the area of the element, b, = y5 — y3,..., €1 = X3 — X2,.... Due to the

non-symmetric structure of the Jacobian, the conjugate gradient (CG) method cannot be
used to solve equation (25). The quasi minimal residual (QVIR) method is appropriate
here. Equating M® and N®© in equation (26) to zero, ie. omitting all non-linear
contributions to the Jacobian, gives rise to the Picard or successive substitution method
discussed earlier.

4. Simulation of a three-phase transformer

The 3-phase transformer shown in Figure 5 is now simulated using the complex-valued
tensor data shown in Figure 3. The phase of the currents in the coils is —85°, 35° and
155°, respectively. For three different flux density levels, Figure 6 compares the
convergence of the proposed Newton-Raphson method (solid) with the convergence
of the Picard or successive substitution method (dashdotted). Obviously, the
Newton-Raphson method converges much faster than the Picard method, except if the
applied currents are small. This is caused by the negative derivatives of the reluctivity
tensor entries at low flux densities shown in Figure 3 (Rayleigh region).

Notes: The phase of the currents in the coils is -85°, 35° and 155°
respectively. The flux density in the middle limb is approximately
alternating with an amplitude of 1.17 T
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Figure 5 shows the flux line distribution. Since the material model used for this
simulation assumes that all B-loci are circular, it is expected that the obtained solution
may differ significantly from reality. Data are required for elliptic B-loci as well, in
order to perform more accurate simulation. The use of a complex reluctivity tensor
allows to visualise the loss density in each finite element. This is shown in Figure 7 for
the region around the T-joint. This figure clearly indicates the increased losses due to
rotational magnetisation at the top of the vertical limb.

5. Conclusions
The use of a complex-valued reluctivity tensor allows to model non-linear, anisotropic

and hysteretic materials in a time-harmonic context. The equations for solving such
type of problems with the Newton-Raphson method are elaborated. The convergence

Loss density [W/m’]
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Figure 6.

Norm of the residual as a
function of time, for three
different flux density
levels, when simulating
with the Newton-Raphson
method (solid) or the
Picard method
(dashdotted)

Figure 7.
Loss density distribution

in the T-joint of the middle
limb
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rate for the Newton-Raphson method is significantly higher than for the successive
substitution method, provided the simulation is performed outside the Rayleigh region
of the material characteristics.

Note

1. “rd” and “td”, respectively, stand for “rolling” and “transverse direction”, since these
directions generally coincide with the principal tensor axes.
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