The Emerald Research Register for this journal is available at
www.emeraldinsight.com/researchregister

™\ The current issue and full text archive of this journal is available at
%22 www.emeraldinsight.com/0332-1649.htm

SoMPEL Comparison of sliding-surface

and moving-band techniques in
frequency-domain finite-element
models of rotating machines

Herbert De Gersem
Institut fiir Theorie Elektromagnetischer Felder (TEMF),
Technische Unive7sitdt Darmstadt, Darmstadt, Germany
Johan Gyselinck and Patrick Dular
Department of Electrical Engineering and Computer Science (ELAP),
University of Liége, Liége, Belgium
Kay Hameyer

RWTH Aachen, Institut fiir Elektrische Maschinen, Aachen, Germany

Thomas Weiland

Institut fiir Theorie Elektromagnetischer Felder (TEMEF),
Technische Universitit Darmstadt, Darmstadt, Germany

1006

Keywords Finite element analysis, Electric machines, Electrotechnology

Abstract The sliding-surface and moving-band techniques are introduced in frequency-domain
finite element formulations to model the solid-body motion of the rotors in an cylindrical
machine. Both techniques are compared concerning their feasibility and computational efficiency.
A frequency-domain model of a capacitor motor is equipped with a sliding surface and compared
to a transient model with moving band. This example illustrates the advantages of frequency-domain
simulation over transient simulation for the simulation of steady-state working conditions of
electrical machines.

1. Introduction

One of the most important design criteria for electrotechnical devices is given by their
characteristics for steady-state operation. Properties such as, efficiency, produced
torque, magnitude of the effective current, harmonic contents of currents and voltages,
temperature rise at nominal operation are examined prior to fine tuning the design
towards characteristics of secondary importance. The nominal operation mode of almost
all electrical energy transducers is an operation at steady-state, i.e. periodically changing
currents, voltages, speed and torque. For the numerical simulation of such conditions,
frequency-domain formulations may be advantageous over transient formulations,
especially when only a small number of a priori known significant ‘time-harmonic
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applied to particular transformer and motor models. Neglecting the influence of higher
harmonics, introduced by e.g. ferromagnetic saturation, non-linear loads, power
electronic equipment and moving parts, is however, only acceptable in specific cases.
The increasing machine performance and the application of inverters necessitates to
account for higher harmonic effects in the simulations. A multi-harmonic approach
meets this requirement by considering a set of harmonic components at predefined
frequencies (Yamada et al, 1989). The higher harmonics introduced by saturation
and switching devices can be considered as illustrated by transformer examples.
The application of the frequency-domain approach to models with moving parts,
e.g. electrical machines, is not straightforward (Vandevelde ef al, 1994; Vinsard and
Laporte, 1994). The Lagrangian approach which is commonly applied for transient,
motional eddy current simulation, ties different coordinate systems to each of the solid,
moving or non-moving bodies. The continuity of the magnetic field is enforced by e.g. a
moving-band approach (Davat et al., 1985) or a sliding-surface technique (Rodger et al,
1990). Although these techniques are well-established in transient simulation schemes,
their application in frequency-domain formulations still causes numerical
inconveniences. In this paper, the moving-band and sliding-surface techniques are
introduced in frequency-domain finite element (FE) models and compared for their
efficiency.

2. Multi-harmonic simulation
A comparison is set-up for a 2D frequency-domain FE model of a rotating machine,
using the magnetodynamic formulation:
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in terms of the z-component A, of the magnetic vector potential with » the reluctivity,
o the conductivity and J; the source current density. The coordinate system at the
stator is denoted by (x, ¥) or in polar coordinates (, 6). The coordinate systems at the
rotor, i.e. (x', ") and (7, 8'), are related to those at the stator by 8" = 6 — wt with w,,
the constant angular mechanical velocity.

The frequency-domain FE technique applies a twofold weighted residual approach
together with a twofold discretisation, i.e. a spatial discretisation of a domain () by a
linear independent set of #¢, FE shape functions aj(¥, y) and a time discretisation at a
temporal domain Y over the time period 7 by an orthonormal set of #pm harmonic
functions H,(#) (Gyselinck et al, 2002). The harmonic functions are chosen from the set
{1, V2 cos(wy,t), — V2sin(w,t)}, where 1 represents the DC components and w, belongs
to a set of a priori chosen electrical pulsations which are multiples of the fundamental
pulsation wgyq = 27/ T. The combined shape functions aj(x,y)H,(#) are basis functions
for the product space combining both approximation spaces. The discretisation of the
magnetic vector potential reads:

Mfe  Mhm

Ay, = > 40 NH (D). )

j=1 g=1

The application of the Ritz-Galerkin technique, ie. the weighing of the partial
differential equation (1) with A, discretised by equation (2) results in the system of
equations:
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Figure 1.

(a) Sliding-surface, and
(b) moving-band
techniques, for an
electrical machine model

Ku=f A3)

where

Kipijag= /()L(VHPquai'Vaj + oH, gg%-aiaj) dtdxdy;

£, = / / JooiH, dt dx dy.
aJy

The particular choice of harmonic functions H, as the temporal shape functions
characterises the frequency-domain approach. Because of the fact that temporal shape
functions are orthonormal in Y, the system matrix K has a block diagonal structure
when the equations are ordered according to the spatial shape functions first.

(C)

3. Machine model
The stator and rotor domains Qg and Q. are treated independently. Different sets of
temporal harmonics are allowed for both domains. The frequency-domain FE
discretisation reads:

Kgug = fsi; ®)
Krtu,—t = frt- (6)

When a sliding-surface technique is applied, the stator domain Qg and the rotor
domain Q,; share the common circular interface T = Qg N Oy in the air gap of the
rotating device (Figure 1). When constructing equations (5) and (6), independent
degrees of freedom are considered at the stator and rotor sides of T'. In case of the
moving-band approach, a single layer of finite elements is constructed in a small
circular domain Qp, situated in the air gap of the machine between Qg and Q¢
(Davat et al,, 1985). The connection between the inner boundary of the stator and the
outer boundary of the rotor is discussed in the following sections.

The distribution of the magnetic vector potential at a circle in the air gap can be
decomposed in a sum of rotating waves:

w(6,8) =" > ppcoS(wpt = A8 = by ) )
bk

where w, A and ¢, . denote the pulsation, the pole-pair number and the phase of the
wave and u,, are unknown coefficients. An observer attached to the rotor experiences
the air-gap field:
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ie. a linear combination of waves with the same pole-pair numbers and phases, but at
the slip pulsations @, = wp — Arwy,. Hence, the selection of the set of harmonics to be
considered at the rotor, not only depends on the harmonics present in the stator but
also on the spatial-harmonic contents expected for the air-gap field, e.g. the higher
harmonics introduced by the winding scheme and those due to the slotting of stator
and rotor.

4. Sliding-surface technique
Several sliding-surface techniques can be distinguished based on the choice of method
for enforcing the continuity at the common interface. In general, the stator and rotor
meshes at ' do not match for all positions attained during the time integration.
Hence, the field at one of the both sides has to be interpolated (Perrin-Bit and Coulomb,
1995) or mortar-projected (Rodger et al., 1990) on the mesh of the other side. A third
non-matching mesh treatment which is particularly efficient for rotating devices, is a
mortar-element method with harmonic test functions as proposed in De Gersem and
Weiland (2003). This approach is particularly suited in case of a frequency-domain FE
formulation and is favoured here.

The continuity of the magnetic vector potential at the sliding surface is enforced by
weighing the difference between the magnetic vector potential at " with the spatial
harmonic test functions & (6, t) = Gr(6)H(£)

where
Gu(0) € {1, V2 cos(A6), —v2sin(A,0)} ©)
and A, € N. The resulting constraint equation is:
Bgug — Bruy =0 10)
where

Bst k0,50 = /r /Yaj(g)Hq(t)Gk(e)Hp(t) deds

Brtkpjg = /F /Y (0" H ()Gr(0' + wmt)Hp(t) d6'dt.

The constraints are added to the formulation using a set of Lagrange multipliers z,
resulting in the saddle-point model:

Kt 0 Bg Ust fst
0 K —Blr{ ue | = | fre |. an
Bst —'Brt 0 z 0

If a sliding surface is applied at a circular interface with an equidistant grid, the
computational cost of the operators By and B, can be reduced considerably by
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weighing the magnetic vector potential at a discrete set of points, e.g. at the FE vertices
atI" (De Gersem and Hameyer, 2002). Then, the discretisation is no longer conforming,
but the integrations in equation (11) can be rearranged such that the fast Fourier
transform (FFT) can be applied F instead of the dense matrices B, and By, for each
temporal harmonic separately:

Bst,p,q = 5qu (12)
Bn,p,q = quF (13)

where Rpprq = 1if wp = wy; — Apwn, ie. if the pulsation w, at the rotor side matches
the slip pulsation introduced by the air-gap wave with pulsation w, and pole pair
number A;. The approach with the FFT does not account for the curvature of I' and the
exact distribution of the magnetic vector potential between the FE vertices at I'. This
approximation is, however, acceptable for many machine models as long as a sufficient
fine discretisation is constructed at I".

5. Moving-band technique

A moving-band ,,;, is a small circular domain, situated in the air gap of the machine in
which a single layer of FEs is constructed (Davat et al, 1985 and Demenko, 1996)
(Figure 1). The moving band is remeshed for every angular position. Hence, the supports
of the spatial FE shape functions in the moving band change depending on the position.
The contributions of the elements of (), read, e.g. for i € Qg andj € Qp,

Kubstrtipjg = /Qm '/Y vH,()H ,()Vey(x, ) - Vaj(x',y") dt dx dy. 14
b

Since the relation between the coordinate systems (x,y) and (x’,y’) and the overlap of the
supports of two spatial FE shape functions «;(x,y) and ej(x’y’) depend on the velocity
and time, the contributions of elements of (), to the stiffness matrix result in a full
coupling between all harmonics (Gyselinck et al, 2003). The combined system of

equations is:
Kqt + Kmb,st,st Kmb,st,rt Ugt fs 15
Kuprst Koo+ Koot | | ure |~ | £t | 1

6. Comparison between moving-band and sliding-surface approaches

6.1 Computational complexity

In case of a multi-harmonic formulation, the stator-rotor coupling gives rise to
additional dense matrix parts or to dense constraint equations, both when using the
moving-band technique or the sliding-surface approach. This is the main drawback for
multi-harmonic formulations compared to transient formulations. The number of
FE vertices at T" scales as ,/n.. The computational complexities of the individual
components of the system matrix components are gathered in Table I. The dense
matrix pats K, B and B, have the same complexity as the multi-harmonic FE
system matrices K¢, and K, themselves and, hence, may lead to a substantial increase
of the computational cost of the algorithm. When the FFT-variant of the sliding-surface



technique is applied, the asymptotical complexity of B and By remains below the one
of K and K. Hence, the stator-rotor coupling does not kill the numerical efficiency of
multi-harmonic simulation.

6.2 Applicability

The moving-band technique also applies to models with more sophisticated motion
patterns. The sliding-surface technique with harmonic test functions is restricted to
circular interfaces or to integer parts of them. An efficient implementation of the
sliding-surface technique moreover requires an equidistant mesh at the interface
in the air gap. The construction of generally applicable preconditioners for the systems
augmented with sliding-surface constraints is cumbersome (De Gersem et al, 2003).

6.3 Discretisation error

The moving-band technique yields conforming, variational formulations, ie. the FE
meshes match in the air gap and a constrained FE test and trial space is used for
the magnetic vector potential. For the sliding-surface technique with FFTs, the
discretisation is not matching at I' and a saddle-point system is attained.
The additional discretisation error introduced at I' is acceptable for the models
considered here.

6.4 Non-propagated harmonic components

A wave component at pulsation w, and pole-pair number A, induced by the stator in
the air gap, corresponds to a wave at pulsation w; = wy — Ay, and pole-pair number
), observed by the rotor. A non-propagated harmonic components arises when either
the component at pulsation w, is not considered at the stator or the component at
pulsation w, is not considered at the rotor. The question arises which boundary
conditions are inherently applied for these components in the air gap. Here, an
important difference between the sliding-surface and the moving-band techniques is
observed. In case of the moving-band approach, a wave component which is considered
at the stator but not at the rotor vanishes at the boundary between the rotor and the
moving band. Similarly, a component introduced by the rotor vanishes at the boundary
between the stator and the moving band. Hence, non-propagated components
experience homogeneous Dirichlet conditions at one of the boundaries of the moving
band. As a consequence, the moving-band technique as presented here is
flux-conservative in the air gap. In case of the sliding-surface technique presented, a
stator harmonic component which is not propagated to the rotor does not vanish at the
stator side of I'. The non-propagated components experience a homogeneous Neumann
constraint at the stator and rotor sides of T. This results in a discontinuous magnetic
flux at T, even if an exact integration as in equation (10) is applied. The application of

Matrix ' Order
Kst: I{rt NhmMlte
Kb Mhmie
Bstr Brt NhmMfe
B(FFT), B4(FFT) Hm A/t 108 /e
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Figure 2.

Magnetic flux plot in the
stator at: (a) 50Hz,

(b) 750 Hz, and (c) 850 Hz;
magnetic flux plot in the
rotor at; (d) 0 Hz, (¢) 100 Hz,
(f) 800 Hz, and (g) 900 Hz

homogeneous Dirichlet constraints to non-propagated flux components requires the
addition of additional constraints of the form SgFug = 0 and SiFuy = 0 where S
selects all components with wave numbers (w,, Az) for which the corresponding slip
pulsations w, = wy — Aywy, are not considered at ), and S selects all components
with wave numbers (w,,\) for which the corresponding excitation pulsations w, =
w; + \w,, are not considered at .

7. Capacitor motor example

Both techniques are compared for a capacitor motor induction machine. The motor has
a nominal power of 0.75kW, a nominal speed of 2,760rpm, a voltage of 230V, a
nominal current of 52 A and a cos ¢ of 0.96. The main winding of the motor is
connected directly to a single-phase alternating current supply whereas the auxiliary
winding is connected through a capacitor of 19.7 wF. The stator has 24 slots whereas
the rotor has 16 slots. Here, as an example, the no-load behaviour of the capacitor motor
is simulated. The power supply is assumed to be a perfect sine at 50 Hz. Because of
ferromagnetic saturation, additional harmonic components are introduced at the stator
of which only the 150 and 250 Hz are considered in the frequency-domain approach.
The air-gap field of a single-phase motor is elliptical. Hence, at no-load, there is besides
the 0Hz component, rotating synchronously to the forward rotating air-gap field, a
significant component at 100Hz introduced by the backward rotating air-gap field.
Substantial components at 750 and 850 Hz are detected due to the slotting of the stator
and rotor. The magnetic flux distributions for the different time-harmonic components
are shown in Figure 2. The spectrum of the current through the main winding indicates
that the slot harmonics at 750 and 850 Hz are substantially more important than the
harmonics introduced by saturation (Figure 3). A transient simulation of the start-up of
the capacitor motor shows that a large number of periods have to be stepped through
before reaching a steady state, which is not necessary when using a multi-harmonic




approach as is proposed in this paper. For the capacitor motor model with 24832 FE Comparison of
' nodgs, the mul'tl-harmomc simulation takes 16 min whereas the transient simulation sliding-surface
requires 5h (Figure 4).

8. Conclusions

Multi-harmonic FE machine models require the solution of large systems of equations, 1013
but may be advantageous over transient schemes which need to step through a
start-up process before reaching a steady state.
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