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 Abstract - The finite element method in two dimensions is a 
common technique to analyse electromagnetic devices. The 
Maxwell stress method to calculate forces has an important role 
in this analysis. To obtain an acceptable accuracy of local field 
values, higher order elements are required yielding an increased 
computation time. A local solution of Laplace’s equation with 
the finite element solution as boundary conditions, promises a 
higher accuracy than the conventional method. The combination 
with lower order elements gives a good trade-off between 
accuracy and computation time. Two different methods are 
compared in the analysis of two applications. 
 

I. INTRODUCTION 
 
 Computing forces acting on a contour C with the Maxwell 
stress tensor, requires local values of the normal and 
tangential components of the magnetic flux density 
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 The two-dimensional finite element solution approximates 
the z-component of the magnetic vector potential 

r
A  as a 

polynomial of order m over each element. Due to numerical 
differentiation, the order of the flux density is of one less, 
i.e. (m-1). This causes numerical inaccuracy of the 
conventional Maxwell stress method when first order 
elements are used. 
 A local solution of Laplace’s equation in circular 
co-ordinates defined by one or two circular boundaries, 
results in a higher accuracy of local field values [2, 4]. 
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 The general solution of Laplace’s equation in circular 
co-ordinates is given as a series of circular harmonics of 
order k [1]: 
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II. METHODS 

 
A. First Method 
 
 To determine the coefficients in (3), two different methods 
can be used. The first method [2, 4] uses the known values of 
the magnetic vector potential on a circle with radius r as 
boundary conditions. The local field value at the centre point 
p of the circular source free region is calculated. This centre 
point is part of a contour C of arbitrary shape (Fig. 1a). The 
different points on the contour are chosen in such a way that 
the circles overlap. Because of a finite-value of the magnetic 
vector potential in the centre point p (r = 0), the coefficients 
ck and dk are zero. A value for the magnetic flux density at 
the centre point is necessary to calculate the force. Due to the 
arbitrary shape of the contour, the magnetic flux density is 
decomposed in its x- and y-components. 
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Fig. 1. Source free region for both methods. 
 
 



 

 

B. Second Method 
 
 The second method uses the values of the magnetic vector 
potential on two concentric circles with radii ri and ro as 
boundary conditions (Fig. 1b). Local field values on the 
circular contour C with radius r r ri o< <  are calculated. 
 If the inner radius ri is taken as reference and a0 is assumed 
to be zero, the general solution of Laplace’s equation is 
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 The coefficients ak, bk, ck and dk are independently 
determined for each circular harmonic. A FFT algorithm is 
used to express the magnetic vector potential at the 
boundaries as a series of such circular harmonics. 
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 Once the magnetic vector potential is known at the contour 
C, the normal and tangential component of the magnetic flux 
density can be determined.  
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 The tangential force component Ft results in the torque T of 
the device. It can be shown that the value of the torque is 
given by (9) and is independent of de radius r of the contour 
C. It is not necessary to calculate the normal and tangential 
component of the magnetic flux density on the contour 
resulting in a faster algorithm. 
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III. APPLICATIONS 

 
 The first method allows arbitrary shaped contours. Forces 
can be calculated on straight and circular contours. The 
second method has an advantage for the force calculation in 
rotating machines with a small air gap. The first method 
requires in this case a large number of small overlapping 
circles, increasing the computation time. 
 Fig. 2 shows the result of a finite element calculation of a 
circular permanent magnet centred in an iron yoke. The 
magnetization direction is 45°. Fig. 3 shows the result of the 
numerical calculation of the x-component of the magnetic 
flux density for one circular region. Because the magnetic 
flux density is constant over an element (first order shape 
functions), the elements are visible. Fig. 4 shows the 
computed results of the Laplace based approximation. The 
surface is much smoother resulting in more accurate values of 
force and torque. Zero force and torque are obtained for a 
rougher mesh compared to the numerical differentiation. 
 A typical example of a rotating machine with a small air 
gap is a squirel cage induction machine. To deal with the non-
linearity of the iron and the induced currents in the rotor, a 
non-linear time-harmonic solution is required. Fig. 5 shows 
the finite element model of one quarter of a 4-pole induction 
machine with 36 stator slots and 28 rotor bars. The air gap 
consists of 3 layers of elements. 
 

 
Fig. 2. Equipotential lines of a permanent magnet centred in an iron yoke. 
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Fig. 3. Numerical calculation of the x-component of the magnetic flux 
density. 
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Fig. 4. Laplace based calculation of the x-component of the magnetic flux 
density. 
 
 Both methods can easily be extended to time-harmonic 
problems. If all values are rms-values the torque is obtained 
by adding the torque calculated using the real and the 
imaginary solution. 
 
 T T Treal imag= +  (10) 
 
 Fig. 6 shows the variation of the torque for different values 
of the radius r of the contour. 1024 points are equidistantly 
spaced over the contour. The dashed line is the result of the 
conventional Maxwell stress method. The first contour is 
placed in the middle of the first layer of elements in the air 
gap, the last one in the middle of the third layer. The solid 
line is the result of the Laplace based torque calculation. The 
result is symmetric because two contours are needed to 
calculate the value of the torque. Fig. 6 clearly shows that the 
conventional Maxwell stress method strongly depends on the 
place of the contour in the air gap, while the Laplace based 
method gives similar values for the torque as long as both 
contours are placed in the middle layer of elements. 
Furthermore is the conventional Maxwell stress method 
sensitive to the uniformity of the finite elements in the air 
gap. 
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Fig. 5. Finite element model and outline and constraint plot of the induction 
machine. 
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Fig. 6. Torque variation for different values of the radius  r of the contour C. 
 

IV. CONCLUSION 
 
 In combination with lower order finite elements, a local 
solution of Laplace’s equation results in more accurate local 
field values for a given computation time. A higher accuracy 
of force and torque is obtained using these field values in the 
Maxwell stress method. 
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