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Electromagnetic Force Density
in a Ferromagnetic Material

François Henrotte, Hans Vande Sande, Geoffrey Deliége, and Kay Hameyer

Abstract— Material derivatives for electromagnetic fields are
presented. They are applied to determine the Maxwell stress
tensor associated with different models of ferromagnetic ma-
terials. The accent is placed on the theoretical implications
of the simplifying assumptions done in the different material
models, with in scope a thermodynamically consistent finite-
element implementation of electromagnetic forces.

Index Terms— Electromagnetic forces, electromechanical ef-
fects, ferromagnetic materials, magnetomechanical effects, mag-
netostriction, modeling, permanent magnets.

I. INTRODUCTION

IT is well-known that electromagnetic (EM) fields generate
forces and stresses. In literature, forces and torques exerted

on pointwise EM sources (charges, dipoles, moments, . . . )
are often considered as the fundamental expressions of the
electromechanical coupling. Energies for systems of such
pointwise sources are indeed easy to express (by summation
of two-by-two contributions) and the force exerted on a given
particle is easily obtained by a simple derivation (gradient)
with respect to the coordinates of that particle.

But the finite-element method requires to represent materials
as continuous media. Distribution of pointwise EM sources
have thus to be translated into densities. This translation is
generally done in a formal way, each pointwise quantity being
simply replaced by its corresponding density (charge density,
. . . ). This way of working disregards the possible interactions
between pointwise sources, and ignores the material structure.
Moreover, when one tries to translate pointwise forces into
their continuous equivalent, severe mathematical difficulties
arise (problem of the self-force, integral of singular kernels,
inconsistencies, . . . [1]) which are technical and give no insight
into the physics involved.

It is therefore desirable to avoid that detour by point-
wise fictitious quantities and to define forces directly from
a continuous medium representation of the materials. The
mathematical analysis of this problem requires to consider a
deforming body, and to apply adequately energy conservation
rules to it. The correct background to perform such operations
is differential geometry (See e.g. [2]), and one needs in
particular the Lie derivative £v, where v denotes the velocity
field. Fortunately, the final results of the analysis can be
expressed in the language of vector analysis (See [6], or [4],
[5] for more classical approach with a control volume). This

Manuscript received July 1,2003. This text presents research results of the
Belgian programme on Interuniversity Poles of Attraction initiated by the
Belgian State, Prime Minister’s Office, Science Policy Programming.

The authors are with the Katholieke Universiteit Leuven, Dept ESAT /
ELECTA, Leuven, Belgium (email: francois.henrotte@esat.kuleuven.ac.be).

Digital Object Identifier 10.1109/TMAG.2004.825150

gives in section II a set of formulae, which must be considered
as axioms. With these formulae, the Maxwell stress tensor
(MST) of any material can be derived straightforwardly from
the expression of the EM energy density of that material. The
Maxwell stress tensor is thus, according to this energy-based
approach, the fundamental representation of the electrome-
chanical coupling in a continuous medium.

The purpose of this paper is to apply the proposed formulae
to different models of ferromagnetic material (reversible case).
In each case, an energy functional is proposed, the main
features of the associated constitutive laws are drawn and
finally the expression of the MST is derived.

II. MATERIAL DERIVATIVES FOR EM FIELDS

Differential geometry provides the rules to compute the
material derivative Lv = ∂t + £v, of any tensor field. The
particular tensor fields we need in this paper are the differential
forms [2], [3]. In a three dimensional space, there exist 4
kinds of differential forms called p−forms, p = 0, 1, 2, 3. Their
material derivatives are

Lvf = ḟ (1)
Lvh = ḣ + (∇v) · h (2)

Lvb = ḃ − b · (∇v) + b tr(∇v) (3)
Lvρ = ρ̇ + tr(∇v) ρ = ∂tρ + div (ρv) (4)

respectively for the 0−forms (which are the scalar fields),
the 1−forms (e.g. the magnetic field), the 2−forms (e.g.
the induction field) and the 3−forms (which are the density
fields). In (1 - 4), ż denotes the total derivative of z(t, xk),
obtained by applying the chain rule of derivatives, component
by component in fixed Euclidean axes if z is a vector field.
The tensor (∇v)ij ≡ ∂ivj is the gradient of the velocity field,
whose trace is tr(∇v) ≡ ∂ivi ≡ div v. Equations (1) and (4)
are used in fluid dynamics to express conservation laws.

III. LINEAR MATERIAL

Throughout the paper, the density of a quantity X will be
denoted ρX . One has thus

X =

∫

Ω

ρX , Ẋ ≡

∫

Ω

LvρX =

∫

Ω

(ρ̇X + tr(∇v) ρ) (5)

by definition of the material derivative [2] and (4). Note the
extra term accounting for the deformation of Ω. In case of
a linear material (µ = cte), the magnetic energy density is
ρΨ = 1

2µ
|b|2 and the variation of the magnetic energy in a

volume Ω is

Ψ̇ =

∫

Ω

(

b

µ
· ḃ +

|b|2

2µ
tr(∇v)

)

. (6)
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In terms of the material derivative, the work WEM done by
the EM forces has a clear definition : WEM ≡ Ψ̇

∣

∣

∣

Lvb=0

.

Equation (3) is used to substitute for ḃ in (6), and one gets

WEM =

∫

Ω

(

b

µ
· (∇v) · b −

|b|2

2µ
tr(∇v)

)

, (7)

which factorizes into a stress-strain product

WEM =

∫

Ω

∇v : σM , σM =
1

µ

(

b b −
|b|2

2
I

)

(8)

where I stands for the identity matrix. Note the use of the
dyadic (undotted) vector product (a b)ij = aibj , the inner
tensor product a : b = aijbij (implicit summation assumed)
and the property (a · c)(b · d) = (a b) : (c d).

Similarly, in terms of the magnetic field, the coenergy
density is ρΦ = 1

2
µ|h|2 and one has

Φ̇
∣

∣

∣

Lvh=0

= −

∫

Ω

∇v : σM , σM = µ

(

h h −
|h|2

2
I

)

. (9)

In both cases the classical expressions of the Maxwell stress
tensor of free space (µ = µ0) [7] are found back.

IV. PERMANENT MAGNET

The energy density of a permanent magnet material is

ρΨ =
|b|2

2µ0

− b · m, (10)

where the magnetization m does not depend on b. One has
however a modelisation choice to make. If one decides to
represent the magnetization as a circulation density (1−form),
one finds out that the term b ·m in (10) gives no contribution
to the Maxwell stress tensor. Indeed, substituting for ḃ and ṁ

using respectively (3) and (2), one finds
(

d

dt

∫

Ω

b · m

)∣

∣

∣

∣

Lvb=0,Lvm=0

= 0. (11)

Under this assumption, the Maxwell stress tensor of the
permanent magnet material is (8) with µ = µ0. If one decides
on the contrary to represent the magnetization as a flux density
(2−form), one finds by using now (3) for ṁ

σM =
b b

µ0

− b m − m b −

(

|b|2

2µ0

− b · m

)

I, (12)

which is quite different from the former result.
This shows that the distinction between flux densities and

circulation densities, which is irrelevant for the expression
of the magnetic constitutive law, becomes essential when the
magneto-mechanical coupling is considered. There is however
no mathematical reason to favour one or the other of these
assumptions. It is only a matter of experiment to determine
case by case which model is the closest to reality.

V. POLYCRYSTALLINE MATERIAL

In case of an polycrystalline ferromagnetic material, a
classical expression of the EM energy density is

ρΨ(b, ε) =

∫ b

0

h(b, ε) · db, (13)

with ε the strain tensor. The idea is to collate measurements
of h(b, ε) and to integrate them in order to define an energy
functional. This approach has however the following draw-
backs. Firstly, the integral with vector bounds in (13) requires
a mathematical definition. A suitable definition is

ρΨ(b, ε) =

∫ t

0

h(bt(u), εt(u)) · ḃt(u) du (14)

where bt(t) and εt(t) represent paths starting from a reference
state and verifying bt(t) = b and εt(t) = ε. The energy
density is properly defined if the integral is independent of
the chosen paths, which gives integrability conditions that are
not fulfilled a priori by measurements. Secondly, an energy
functional like (14) does not rely on a material model as it is
directly built from measurements.

We shall therefore adopt a simpler model

ρΦ =

∫ |h|

0

µ0 (1 + χ(x)) x dx, (15)

where the magnetic susceptibility χ is allowed to depend
on the modulus of h only, which gives an unambiguously
defined integral. As there is no explicit dependency of χ
with strain, this material model does not take magnetostriction
into account, but it gives a good representation of isotropic
polycrystalline saturable materials, like iron and non-laminated
steel. The Maxwell stress tensor associated with (15) is

σM = µ0(1 + χ(h)) h h − ρΦ
I. (16)

We shall see in section VII how a material model with
magnetostriction can be built.

VI. MONOCRYSTAL

Ferromagnetic crystals are substances with permanent ato-
mic magnetic moments that are coupled by exchange forces of
quantum-mechanical origin. Therefore, they line up with each
other and create an intense magnetic moment density. On the
other hand, in order to minimize the overall magnetostatic
energy, a macroscopic ferromagnetic monocrystal tends to
break up into several domains, called Weiss domains. The
magnetic moment density is homogeneous within each domain
but its orientation varies from one domain to the next, so
that the total magnetic moment of the sample vanishes if no
external field is applied. Because of anisotropy and provided
the material is not highly saturated, the magnetic moments of
the domains are preferably oriented along one of the easy-axes
of magnetization of the crystal. These are the mechanisms we
are going to implement in a simple but realistic material model.
Energy of Bloch walls and slight deviations of the moments
from the easy-axes are not considered here.

A small piece Ω of a ferromagnetic monocrystal is con-
sidered at an intermediary scale between the microscopic
structure of the ferromagnet (Weiss domains, . . . ) and the
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characteristic macroscopic dimensions of the system. Let ms

be the saturation magnetization of that monocrystal. A 2D
monocrystal is considered, with two easy-axes of magnetiza-
tion, respectively aligned with the r and s directions. There
are then 4 possible states for each atomic moment, i.e. ±r

and ±s, Fig. 1. Let a, b, c, d be their relative populations, with
a, b, c, d ∈ [0, 1] and a + b + c + d = 1.

Fig. 1. A simple ferromagnetic monocrystal material model.

The magnetic coenergy in Ω is

Φ =

∫

Ω

µ0

(

|h|2

2µ0

− h · m + Γ

)

(17)

with

m = ms ( (a − c) r + (b − d) s ) , (18)

Γ = C
m2

sξ
2

2
, (19)

ξ2 = (b − a)2 + (c − b)2 + (d − c)2 + (a − d)2. (20)

The first term in (17) is the magnetostatic energy and the
second one is the potential energy of the magnetic moments in
the applied magnetic field. The third one modelizes the long-
range interaction between domains. It is interpreted as follows.
As shown at Fig. 1, the four domains can be considered
as forming a magnetic circuit. Each imbalance between two
successive sections of that circuit creates a kind of leakage
field, which increases the magnetostatic energy. As it stands
for a long range effect, Γ can reasonably be assumed not to
depend on the strain.

The EM coenergy functional (17) depends on the variables
h and ak = {a, b, c, d}. For a given h, the magnetization is
determined by the constrained minimization

a?
k(h) ≡ min

ak

Φ(h, ak) (21)

with respect to the internal variables ak. Fig. 2 shows the
evolution of the populations a, b, c, d for one cycle of an
applied sinusoidal h field.
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Fig. 2. Evolution of the populations a, b, c, d for one cycle of the applied
h field, making an angle 22.5◦ with the r−axis.

This simple model of a ferromagnetic monocrystal, which
involves only two free parameters, ms and C, is yet able to

represent saturation and anisotropy, as shown at Fig. 3. The
value of C is related with the susceptibility of the material,
i.e. the slope at zero-field of the magnetization curve. In
general, the value of the free parameters are determined by
matching the constitutive laws derived from the material model
with measurements. For a better accuracy of the model, more
elaborated expressions of ξ can be considered.
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Fig. 3. Magnetization curves obtained for different directions of the applied
h field, with C = 0.25.

Forces are again obtained by considering the variation of
the magnetic coenergy. The ak’s being internal variables and
not fields, their derivative ȧk is a simple time derivative. The
variation of the EM energy is thus evaluated with Lvh = 0,
Lvm = 0 and ȧk = 0. The expression of the MST associated
with this monocrystal model turns out to be identical to the
one of a permanent magnet, since Γ will play no role in the
magnetomechanical coupling. This means that it is more the
existence of a magnetization in the material, than the way this
magnetization depends on the magnetic field, that determines
the magnetomechanical behaviour.

Fig. 3 shows also that the monocrystal model behaves
isotropic and linear at low fields. We have thus three candidate
models to represent linear isotropic materials at low fields :
the linear model of section III and the two permanent magnet
models of section IV. There are therefore also three candidate
expressions of the MST : let model A be (8), model B be (8)
with µ = µ0 and model C be (12). If those three expressions
are implemented and the deformation of a closed rectangular
magnetic circuit is computed, one observes that the three
models, which are perfectly equivalent on the magnetic side,
give different deformations, Fig. 4. Again, it is a matter of
experiment and modelling to determine, case by case, which
model matches the best reality.
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Fig. 4. On the left, a deformed state of a quarter of the magnetic core. On the
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VII. MAGNETOSTRICTIVE MATERIAL

This quantitative model describes the magnetostrain effect
observed in several ferromagnetic shape memory alloys [8].
The material is treated as a composite of three martensitic
phases aligned with the crystallography axes [100], [010] and
[001]. Let x, y, z ∈ [0, 1], x + y + z = 1, be the respective
populations of the three phases. For the phase aligned with
[100], a spontaneous elongation ε0 along the x-axis is observed
and a contraction −ε0/2 along the other two axes. On the other
hand, for an applied magnetic field hx along the x-direction,
a magnetization ma(hx) along the x-direction is observed and
a slower magnetization mt(hx) in the other two directions,
Fig.5 and 6. As it goes similarly for the other two phases, the
magnetization m and the strain ε can be written as :

m ≡ M · x =

(

ma(hx) mt(hx) mt(hx)
mt(hy) ma(hy) mt(hy)
mt(hz) mt(hz) ma(hz)

)(

x
y
z

)

,

(

εxx

εyy

εzz

)

= ε0





1 −
1
2

−
1
2

−
1
2

1 −
1
2

−
1
2

−
1
2

1





(

x
y
z

)

.

Taking the relations x+ y + z = 1 and εxx + εyy + εzz = 0
into consideration, this relation can be inverted into

x(ε) ≡





x
y
z



 =
1

3





1
1
1



+
2

3ε0





εxx

εyy

εzz



 . (22)

The EM coenergy density of this material is

ρΦ = µ0

(

∫ h

0

dh · M · x(ε) +
|h|2

2

)

. (23)

Since (ε̇xx, ε̇yy, ε̇zz)
T = diag(∇v), it leads to the MST

σM = µ0h (M · x + h) +
2µ0

3ε0

∫

h

0

dh · M · J − ρΦ
I (24)

where J is the tensor defined by Jijk = 1 if i = j = k and
Jijk = 0 otherwise.
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Fig. 5. On the left, the magnetization curves ma(h) (axial) and mt(h)
(transverse). On the right, the corresponding magnetostriction. The points
represent measured values for pure Ni [9].

VIII. CONCLUSION

The purpose of this paper is to place theoretical land-
marks for the finite element modelling of electromechanical
interactions in materials. An energy-based approach has been
chosen so that the model is necessarily consistent from the
thermodynamical point of view and the reciprocity conditions
are automatically fulfilled. In particular, the Maxwell stress
tensor of the material can be systematically derived by ap-
plying the formulae of the material derivative of EM fields.
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Fig. 6. On the left, the magnetization curves ma(h) (axial) and mt(h)
(transverse). On the right, the corresponding magnetostriction. The points
represent measured values for pure Fe [9].

The Maxwell stress tensor finds so its natural place in the
energy-based description of materials, i.e. the partial derivative
of the electromagnetic energy with respect to the cinematic
variables. As the material derivatives for the EM fields involve
the gradient of the velocity field, the Maxwell stress tensor
σM (and not the EM force density ρf

EM ≡ div σM ), is the
fundamental expression of the electromechanical coupling in
a continuous medium. All other expressions of forces and
stresses can be deduced from it. The Maxwell stress tensor can
be used directly as an applied stress in the structural equation
div (σ +σM )+ρf = 0. The resultant force on a moving body
is obtained by integrating it over an enclosing surface. Finally,
the classical nodal force formulae proposed in e.g. [10], [11],
can be readily found back by multiplying it with the gradient
of a nodal shape function and integrating over the support of
that shape function, see [12], [5].
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