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 Abstract - Multipole configurations are used as magnetic 
rollers in eddy current separators as well as in copy machines. 
The magnetic field attracts ferromagnetic particles. Therefore, it 
is the aim to calculate the magnetic field distribution and the 
force density distribution, even if only the magnetic field outside 
the magnetic roller is available. Transforming the measured 
magnetic field values into a set of magnetic vector potentials and 
using them as the magnetic source in the finite element analysis, 
makes this method independent of the real excitation (permanent 
magnets or electromagnets). In this way it is possible to evaluate 
the force components acting on the particles. 
 

I. GENERAL COMPUTATION METHOD 
 
A. Introduction 
 
 For obvious reasons, it is not possible to measure the 
magnetic flux density inside a multipole magnetic roller. On 
the other hand the real configuration of the field excitation is 
not always known. In order to simulate the excitation, the 
measured values of the normal component of the magnetic 
flux density Bn(r1,ρ) at a sleeve of radius r1 outside the 
magnetic roller can be transformed into a set of magnetic 
vector potentials. This set can be used as the magnetic source 
in the finite element analysis. Fig. 1 shows the distribution of 
the magnetic field for an arbitrary 4-pole configuration.  
 
B. First order elements 
 
 The transformation is based on the solution of LAPLACE’s 
equation in circular co-ordinates and the boundary condition 
A(∞,ρ) = 0. In the two-dimensional case the magnetic vector 
potential A has only a value in the z-direction. The general 
solution for the magnetic vector potential A(r,ρ) in the 
z-direction is given by the FOURIER series [2] 
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Fig. 1. Normal component of the magnetic flux density Bn(r1,ρ) derived 
from measurements. 
 
 With curl A = B, the normal component Bn(r,ρ) and the 
tangential component Bt(r,ρ) of the flux density are given by 
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 Due to the discretisation errors of the finite element 
analysis, this solution A(r,ρ) (1) is valid for a radius 
r ≥ r1 + ∆r. To avoid this limitations one can transform the 
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Fig. 2. Computed magnetic vector potential A(r1,ρ) and A(r0, ρ). 
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Fig. 3. Flux plot of the arbitrary 4-pole configuration. 
 
set of magnetic vector potentials into another set at a radius r0 
inside the magnetic roller with 0 ≤ r0 ≤ r1 and giving the same 
flux density at the radius r1. This means that the solution 
A(r,ρ) is valid for an arbitrary radius outside the magnetic 
roller. Fig. 2. shows the vector potential A(r1,ρ) at a radius r1 
and A(r0,ρ) at a radius r0 inside the magnetic roller. The 
approximation with 180 values of the magnetic vector 
potential and using the open boundary technique [3] results in 
the flux plot of Fig. 3. 
 The field distribution (2) compared with the results 
obtained with the method mentioned leads to a small error. 
The error e is defined by  
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where BFEM(r1,ρ) is the normal component of the magnetic 
flux density along a circular contour with radius r1. The error 
e is lower than 0.1% for each peak value plotted in Fig. 1. 
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Fig. 4. Magnetic vector potential along the edge of an element. 

C. Higher order elements 
 
 To achieve the same accuracy, an iterative method is 
necessary for higher order elements. Fig. 4 shows the 
magnetic vector potential along the edge of an element at the 
inner boundary of the finite element model. Because 180 
values are used for the magnetic source, this edge 
corresponds with an angle of 2°. The first order 
approximation coincides with the general solution (1). Due to 
the difference in contents of circular harmonics, the values of 
the magnetic vector potential used as the magnetic source at 
radius r0, are adapted to obtain the desired flux density at the 
radius r1. Two or three iterative steps are usually sufficient to 
obtain the same accuracy. 
 

II. FORCE CALCULATION 
 
 The force is calculated by using the change of the stored 
magnetic energy. The magnetic energy density is  
 

w B H H
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2 2
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 If air is replaced by magnetic material with a relative 
permeability µr, the energy difference is 
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 The force density is obtained by the derivative of ∆wmag: 
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 An equivalent formulation for the magnetic force density 
can be found in [6]. Fig. 5 shows the force density for the 
arbitrary 4-pole configuration along a circular contour at a 
distance of 1 mm from the sleeve. The sleeve has a radius of 
10 mm. The particles of the magnetic powder have a low 
relative permeability µr = 10. 
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Fig. 5. Magnetic force density f(r1 + 1 mm,ρ). 
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Fig. 6. Flux plot of the arbitrary 4-pole magnetic roller covered with a skin 
of magnetic powder. 
 

III. MULTI-SKIN APPROACH 
 
 The multi-skin approach is an extension of the same 
technique. This is the case when the magnetic powder forms a 
skin around the magnetic roller or when materials with a 
different relative permeability are used. It is assumed that the 
skin is approximated as uniformly thick. The outer skin is 
formed by the surrounding air. 
 The full formulation for the magnetic vector potential in 
the inner skins has to be used: 
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 For the surrounding air the formulation of (1) can still be 
used. All the coefficients for the different formulation in each 
skin are determined by the boundary conditions. At the 
boundary of radius r1 between skin 1 and skin 2 yields 
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 Skin 1 is formed by the sleeve and skin 2 by the magnetic 
powder. The same boundary conditions are valid for the 
boundary between skin 2 and 3. This results in a set of 
equations for each circular harmonic.  
 
 

-2.5E+7

-2.0E+7

-1.5E+7

-1.0E+7

-5.0E+6

0.0E+0

5.0E+6

0 45 90 135 180 225 270 315 360
Angle [º]

M
ag

ne
tic

 fo
rc

e 
de

ns
ity

 [N
/m

3]

fn

ft

 
Fig. 7. Magnetic force density f(r1 + 1 mm,ρ). 
 
 Fig. 6 shows the flux plot of the same arbitrary 4-pole 
magnetic roller, which means that the same values for the 
magnetic vector potential are used as magnetic source. The 
magnetic powder forms a skin of thickness 0.5 mm. Fig. 7 
shows the force density along a circular contour at a distance 
of 1 mm from the sleeve. The magnetic powder acts as a 
magnetic shield around the magnetic roller. 
 

IV. CONCLUSION 
 
 The method of transforming measured magnetic flux 
density values into a set of magnetic vector potentials, can be 
used to examine the behaviour of magnetic particles in the 
neighbourhood of a magnetic roller. In order to calculate the 
distribution of the force density, it is not required to have any 
information about the interior of the magnetic roller. 
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