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Abstract

Automated Optimal Design (AOD) of electromagnetic devices turns out to be a task of increasing significance in the
field of electrical engineering. Often the direct relation between desired quality of the technical product and the design
variables is unknown. Stochastic optimization methods in combination with general numerical field computation
techniques like the finite element method (FEM) offer the most universal approach in AOD. The application to a
nonlinear magneto-static problem of technical significance is demonstrated by minimizing the overall material cost of
a small DC-motor by optimizing the rotor and stator shape.

1. Introduction

The combination of numerical field computation methods with stochastic search algorithms
permits computer simulations to be extended to the design stage. Nowadays, numerical meth-
ods become more and more common in the design of electromagnetic devices. With increasing
computer speed, complex problems can be solved with a high economical efficiency. To accel-
erate development expenditure, field computation of complicated geometries with various types
of material can be performed thus avoiding expensive prototyping. As a consequence, numerical
optimization algorithms are combined with field calculation methods.

Depending on the determination of the step length, the search direction and the stopping criterion
various numerical optimization algorithms are introduced [4]. There is a distinction between
deterministic and heuristic techniques. In this paper a heuristic search algorithm is introduced.

An advantage of stochastic search methods is their insensibility to disturbances of the objective
function caused by numerical evaluation. This follows from non-deterministic search and disuse of
derivatives. A second important property is the easy treatment of constraints. Hence a complicated
transformation into an unconstrained problem formulation is unnecessary.

To solve the non-linear field problem a suitable method of wide application range has to be
chosen. Here field calculation is accomplished by the FEM. Error estimation, adaptive mesh
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generation and refinement are used. This method guarantees the greatest possible facility in
modeling and allows optimization without severe geometrical restrictions. Thus, compared to the
gradient based optimization method reported in [9], no topological restrictions concerning the finite
element mesh have to be considered.

2. Optimization method

Optimization in general means to find the best solution for a given problem with the consideration
of several restricting conditions. In mathematical terms:

Define a point g = (z1,23, - .., z,)T with the independent variables z,x;, ..., z» in such a
way, that by the variation of the design variables, inside the admissible space, the value of a quality
function Z(x) reaches a minimum or maximum. The point x( is described as the optimum.

Therefore, optimization requires the concentration of all design aims into a single quality function
Z(x) = Z(z1, 2, ..., Tn) — min. (1)

This function depends on all independent design parameters = {z;: ¢« = 1(1)n} and represents
the quality of the specific design. Additional constraints limit the admissible parameter variation.

Stochastic strategies do not use the derivatives and only evaluate the objective itself. If the
objective function is complicated and includes local optima or saddle points deterministic methods
in general do not converge to the global optimum.

In this contribution a combination of evolution strategy and simulated annealing is used. The
evolution strategy is well known to be a stable local optimizer, but has only poor global convergence
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Fig. 1. Block diagram of the combined search algorithm.




M. Kasper et al. / Int. J. of Applied Electromagnetics and Mechanics 6 (1995) 369

properties. Simulated annealing is a global optimizer with slow local convergence speed. In the
combined optimization algorithm the random variations of the design variables x; are done using
the principles of evolution strategy and the selection of the new parameter vectors is done according
to the rules of simulated annealing (Fig. 1).

The evolution strategy copies the natural principles mutation and selection (survival of the
fittest) of the biological evolution into the technical optimization problem. The basic concept of
the evolution strategy is found in the substitution of Darwin’s notion of fitness for the quality of a
technical problem. The driving force in the optimization process is the repetition of mutation and
selection in successive steps.

Rechenberg [3] transformed the scheme of biological evolution into a simple algorithm. This
elementary procedure is termed the (1 + 1)-strategy. One parent (valid solution vector) generates
a descendant, which differs by mutation of the design variables from the parent. After evaluation
of the objective function the vector design variables of better quality is chosen to form the parent
for the following generation etc.

Based on the (1 + 1)-strategy more general and powerful strategies were introduced by Schwefel
[4].

The mutation of the design variables of an initial generation of p admissible design vectors
(parents) leads to a number of children. The variables of one child may depend on p parent
variable vectors. The p best children of A are selected to form the next parent generation. This
procedure is termed a comma-strategy (u/p, A). Compared to Rechenberg’s [3] (1 + 1)-strategy
the comma variant is more efficient [4].

In order to transfer this procedure to an efficient optimization method, a self-adaptive step length
control is necessary. If the step length is too small, i.e., descendant and parent vectors are very
similar, the method will exhibit a poor convergence rate. An improvement of quality will not be
noticed. On the other hand, if the mutation step length is too large, the algorithm results in pure
random variation. The convergence rate of evolution strategy is maximal in a narrow band of step
length (evolution window). A decreasing step length in average ensures convergence during the
optimization. Thus, the step length serves as a convergence criterion.

Simulated annealing describes the physical process of heating up a solid to a maximum tem-
perature at which all molecules are freely moving and the process of slowly cooling down until a
state of minimal inner free energy Ei is reached. This process describes a natural optimization, the
minimization of the free energy. Simulated annealing introduces by the Boltzmann distribution the
control parameter temperature into the search process [1, 2]. Thus the probability of the change
of energy can be expressed by:

AEi).

T @

prob{AE} = exp ( -
This acceptance criterion aims to avoid the system getting stuck in a local minimum. Barriers
of height ~ kgT, where kg is the Boltzmann constant and 7" the temperature, can be surmounted
on the way to a better solution. During the optimization the artificial temperature T is reduced by
a simple schedule T® = TOqk where k denotes the step of iteration and the reduction factor is
O<a<l
To illustrate the simplicity and its universal applicability Fig. 1 shows a scheme of the algorithm
described more detailed in [5].
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3. Field computation

Two-dimensional field calculation is performed with standard finite elements using linear shape
functions over triangular elements to approximate the vector potential. The method applies to non-
linear magneto-static or eddy current problems. Since a two-dimensional geometry is assumed,
the vector potential consists of only one component [6, 7].

To guarantee global convergence of the nonlinear vector equation for the nodal potential V'

F(V)=0 3)

a damped variant of the Newton method is used. This method exhibits good global (at least linear)
and quadratic local convergence. It is important for the convergence of this method to determine
a suitable step length. If d**1 is the correction vector obtained from the solution of the linear
system (Jacobian matrix), then a damping parameter « is chosen such that

(k) _  g(k+1) _ (k)
£ (v - ad®) [, <0 - ow]r (v, “
is fulfilled. This condition guarantees that the residual decreases in each iteration.
a=@ with j=0(1)jmax. (5)

Damping is performed in successive steps and the first j fulfilling condition (3) is chosen. Damping
parameters are in the range 3 = (0, 1) and ¢ = (0, 1/2). Adequate values are 3 = 0.5 and o = 0.01.
An additional regularization of the search directing is not necessary. Only if the angle between
Newton and the steepest decent direction is near to or larger than 7/2 the Levenberg—Marquardt
method gives an improvement.

The accuracy needed to solve the linear system by an iterative method can be derived from the
accuracy of the last Newton step. An adequate error bound of the residual of the linear system is
given by

< (v,

Due to the low accuracy in the first Newton steps, computation effort in solving the linear system
is reduced. The sparse linear system is solved by a preconditioned conjugate gradient method. To
ensure controlled accuracy an adaptive mesh generation is employed.

An initial mesh is generated from any geometry represented by non-overlapping polygons. This
mesh consists of a minimum number of triangles, i.e., no inner points are generated inside the
polygons.

To control discretization and numerical errors the local error distribution is evaluated and local
mesh refinement is used in successive steps until a given error bound is reached [8].

Figure 2 shows an initial and adaptive mesh for a small brushed DC-motor excited with per-
manent magnets in the stator. The adaptively refined mesh is coarse in regions where the local
change of field quantities is small, e.g., outside the stator and fine inside regions with high satu-
ration respectively. The resulting flux density distribution is plotted in Fig. 3.
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Fig. 2. a) Initial and b) adaptively refined finite element mesh.
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Fig. 3. Magnetic field distribution (iteration step 120).

4. Problem description

The application of the method is demonstrated by the shape optimization of a fractional horse
power DC-motor. The objective is to minimize the overall material costs cost(x) subject to a
given torque Tmin. Permanent magnet material, winding copper and iron lamination are taken into
consideration. The quality function is defined to be a function of the total material costs.

cost (x)—cost max

Z(x) =10  costma + C(z). @)
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Fig. 4. Motor geometry and definition of design variables.

The use of a penalty term C(x) in the form

Tinin—T()
Cx)=1{ 10 T@® | T < Ty, (8)
17 T > Tmin,

allows to evaluate the objective function even if the torque constraint is violated. The sum of
material costs is computed with the specific costs for winding copper: 5 US $/Kg, lamination:
1 US $/Kg and permanent magnet: 46 US $/Kg. The terms (7), (8) were scaled to be equal to one
for cost (x) = cost max and T'(x) = Tmin. The constraints were set to a torque of Tmin = 0.22 Nm/m
and cost max = 20 US $/m.

The torque T'(x) is computed by integrating the Maxwell stress tensor in the air gap region of
the machine. Flux density depending rotor iron losses were taken into consideration at a rated
speed of 200 RPM and subtracted from the air gap torque to form 7'(z). The losses were computed
by integrating the loss density across the rotor iron.

The geometry is modeled with 14 design variables. The free parameters are the n/2 edges
of the polygon describing the rotor slot contour and the outer dimensions of rotor and stator as
defined in Fig. 4.

Additional constraints result from fabrication conditions:

— magnet height fixed to 2.0 mm;

— constant air gap, set to 0.5 mm,;

— minimal tooth width, set to 0.5 mm;

— minimal slot opening, set to 1.7 mm,;

— pole arc of the permanent magnet, set to 121°;
— diameter of the shaft, set to 3.0 mm.

Some additional geometrical restrictions have to be introduced in order to guarantee the function
of the motor expressed by its topology, e.g., the rotor has to be smaller than the stator.
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Fig. 5. Motor geometry variation during optimization of the best child in each generation. The given data indicate
the iteration step with its value of quality.

5. Results

The evolution strategy used was the (12/12, 60)-strategy. Due to the complex and highly non-
linear problem formulation, a reliable strategy with a rather great number of parents and children is
recommended. The use of a comma-variant for the evolution strategy is advantageous with regard
to the numerical inaccuracies of field and torque computation.

Starting from an initial value of 1 K the temperature was successively reduced every 30 iteration
steps. The value of the starting temperature is problem dependent. The starting temperature has
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Fig. 6. Step length versus iteration count of the best child in each generation.

to be adjusted according the relative variation of the objective function. Within the picture of
simulated annealing the starting temperature corresponds to a temperature near the melting point.
Different cooling schedules have been investigated. It was found that a geometrically decreasing
temperature schedule is sufficient.

During optimization an accuracy of at least 5% (energy norm) was required for the FEM field
calculation. The number of elements constituting of the mesh was restricted to 20,000 elements.

Using this maximum number of elements and the mentioned accuracy, the computational costs
for the evaluation of the quality function for each variant on a PC 486/66 lies in the range of
eight minutes. The optimization process was stopped after 185 iterations. Thus, using a (12/12,
60)-strategy means 60 function evaluations per generation all along the 185 iteration steps.

The change of shape from a suboptimal initial geometry via temporary and the final shape of
the motor is shown in Fig. 5. It can be noticed, that the iron parts of the initial geometry are
over dimensioned. The actual torque of this configuration was approximately 25% lower than the
desired value Tmin. The optimization algorithm very quickly decreases the overall dimensions of
the starting configuration. After approximately 10 iterations the final outer dimensions are nearly
reached. The fine-tuning of the remaining design variables controlling the shape of the slots is
done in the following iterations. Thus, a fast convergence of the optimization strategy used can
be stated.

The optimized motor holds the torque recommended, which mainly is achieved by enlarging
the winding copper volume of about 20%. The most significant change from the start to the final
geometry can be seen in the halving of the iron volume. Consequently the iron parts are highly
saturated, especially the teeth regions. In comparison to this, a test optimization with neglected
rotor iron losses resulted in a 10% smaller rotor diameter.

The total material costs are governed by the permanent magnet. The quality expressed by the
material expenditure decreased approximately by 10%.

After optimization, the overall volume of the motor was reduced by 38%. In Fig. 5 this rapid
decline of the outer dimensions in the first iteration steps is shown. Due to the large step length the
geometry varies strongly and shows the examination of several unusual shapes. The improvement
of quality is shown in Fig. 7. Comparing the parameters of the final geometry with the above
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Fig. 7. Quality versus iteration count of the best child in each generation.

mentioned constraints resulting from fabrication conditions, it can be noticed that all minimal size
constraints are active. On average, a continuing descent of step length in between successive
temperature steps can be seen out of Fig. 6. Due to the use of evolution strategy as a local
minimizer only a limited number of temperature steps are needed. At the temperature steps the
optimization process is destabilized and step length strongly rises. This avoids the algorithm to
get stuck in a local minimum and to ensure global convergence as Figs 6, 7 illustrate.

6. Conclusion

A method for global minimization of functions of continuous variables based on a combination
of evolution strategy and simulated annealing was presented.

The highly non-linear electromagnetic field of a small DC-motor excited with permanent magnets
has been optimized. Among different approaches, stochastic search strategies offer a simple and
reliable alternative, since these methods do not require derivatives of the objective function. The
main advantage of stochastic procedures is their stability with respect to discretization or numerical
errors.

The objective function evaluation was performed with the standard finite element method using
linear shape functions, error estimation and adaptive mesh generation. The methods introduced
guarantee the greatest possible facility in modeling and allow the optimization without severe
geometrical restrictions. A variant of damped Newton iteration has been introduced to guarantee
convergence of the field computation during the optimization. The application of the method was
demonstrated by shape optimization of a brushed fractional horsepower DC-motor.
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