
COMPARISON OF SLIDING-SURFACE AND MOVING-BAND TECHNIQUES IN
FREQUENCY-DOMAIN FINITE-ELEMENT MODELS OF ROTATING MACHINES

Herbert De Gersem�, Johan Gyselinck�, Patrick Dular�, Kay Hameyer�, Thomas Weiland�

�Technische Universität Darmstadt, Computational Electromagnetics Laboratory (TEMF)
Schlossgartenstraße 8, D–64289 Darmstadt, Germany
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ABSTRACT

The sliding-surface and moving-band techniques are intro-
duced in frequency-domain finite element formulations to
model the solid-body motion of the rotors in an cylindri-
cal machine. Both techniques are compared concerning
their feasibility and computational efficiency. A frequency-
domain model of a capacitor motor is equipped with a slid-
ing surface and compared to a transient model with moving
band. This example illustrates the advantages of frequency-
domain simulation over transient simulation for the simu-
lation of steady-state working conditions of electrical ma-
chines.

I. INTRODUCTION

One of the most important design criteria for electrotech-
nical devices is given by their characteristics for steady-
state operation. Properties such as e.g. efficiency, produced
torque, magnitude of the effective current, harmonic con-
tents of currents and voltages, temperature rise at nominal
operation are examined prior to fine tuning the design to-
wards characteristics of secondary importance. The nomi-
nal operation mode of almost all electrical energy transduc-
ers is an operation at steady-state, i.e. periodically chang-
ing currents, voltages, speed and torque. For the numerical
simulation of such conditions, frequency-domain formula-
tions may be advantageous over transient formulations, es-
pecially when only a small number of a-priori known sig-
nificant time-harmonic components are expected. Standard
static and time-harmonic approaches are commonly applied
to particular transformer and motor models. Neglecting the
influence of higher harmonics, introduced by e.g. ferromag-
netic saturation, non-linear loads, power electronic equip-
ment and moving parts, is, however, only acceptable in spe-
cific cases. The increasing machine performance and the
application of inverters necessitates to account for higher
harmonic effects in the simulations. A multi-harmonic ap-
proach meets this requirement by considering a set of har-
monic component at predefined frequencies [1]. The higher
harmonics introduced by saturation and switching devices
can be taken into account as illustrated by transformer ex-
amples. The application of the frequency-domain approach
to models with moving parts, e.g. electrical machines, is not
straightforward [2, 3]. The Lagrangian approach which is
commonly applied for transient, motional eddy current sim-

ulation, ties different coordinate systems to each of the solid,
moving or non-moving bodies. The continuity of the mag-
netic field is enforced by e.g. a moving-band approach [4] or
a sliding-surface technique [5]. Although these techniques
are well-established in transient simulation schemes, their
application in frequency-domain formulations still causes
numerical inconveniences. In this paper, the moving-band
and sliding-surface techniques are introduced in frequency-
domain FE models and compared for their efficiency.

II. MULTI-HARMONIC SIMULATION

A comparison is set up for a 2D frequency-domain finite-
element (FE) model of a rotating machine, using the magne-
todynamic formulation
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in terms of the 	-component �� of the magnetic vector po-
tential with � the reluctivity, � the conductivity and �� the
source current density. The coordinate system at the stator is
denoted by ��
 �� or in polar coordinates ��
 ��. The coordi-
nate systems at the rotor, i.e., ���
 ��� and ��
 ���, are related
to those at the stator by �� � � � �� with � the constant
angular mechanical velocity.

The frequency-domain finite-element (FE) technique ap-
plies a twofold weighted residual approach together with a
twofold discretisation, i.e. a spatial discretisation of a do-
main � by a linear independent set of � �� FE shape func-
tions ����
 �� and a time discretisation at a temporal domain
� over the time period � by an orthonormal set of ��� har-
monic functions ����� [6]. The harmonic functions are cho-
sen from the set ��
�� 	
�����
�

�
� ������� where �

represents the DC components and � belongs to a set of a-
priori chosen electrical pulsations which are multiples of the
fundamental pulsation ��	
 � ���� . The combined shape
functions ����
 ������� are basis functions for the product
space combining both approximation spaces. The discretisa-
tion of the magnetic vector potential reads
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The application of the Ritz-Galerkin technique, i.e. the
weighing of the partial differential equation (1) with � � dis-
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Fig. 1: (a) Sliding-surface and (b) moving-band techniques for an electrical
machine model.

cretised by (2) results in the system of equations
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The particular choice of harmonic functions � � as the tem-
poral shape functions characterises the frequency-domain
approach. Due to the fact that temporal shape functions are
orthonormal in �, the system matrix � has a block diago-
nal structure when the equations are ordered according to the
spatial shape functions first.

III. MACHINE MODEL

The stator and rotor domains ��� and ��� are treated inde-
pendently. Different sets of temporal harmonics are allowed
for both domains. The frequency-domain FE discretisation
reads

������ � ��� � (6)

������ � ��� � (7)

When a sliding-surface technique is applied, the stator do-
main ��� and the rotor domain ��� share the common circu-
lar interface � � ��� � ��� in the air gap of the rotating de-
vice (Fig. 1). When constructing (6) and (7), independent de-
grees of freedom are considered at the stator and rotor sides
of �. In case of the moving-band approach, a single layer
of finite elements is constructed in a small circular domain
���, situated in the air gap of the machine between � �� and
��� [4]. The connection between the inner boundary of the
stator and the outer boundary of the rotor is discussed in the
following sections.

The distribution of the magnetic vector potential at a circle
in the air gap can be decomposed in a sum of rotating waves
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where 	, �
 and �	�
 denote the pulsation, the pole-pair
number and the phase of the wave and �	�
 are unknown
coefficients. An observer attached to the rotor experiences
the air-gap field
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i.e., a linear combination of waves with the same pole-
pair numbers and phases, but at the slip pulsations �	�
 �
	 � �
�. Hence, the selection of the set of harmonics
to be considered at the rotor, not only depends on the har-
monics present in the stator but also on the spatial-harmonic
contents expected for the air-gap field, e.g. the higher har-
monics introduced by the winding scheme and those due to
the slotting of stator and rotor.

IV. SLIDING-SURFACE TECHNIQUE

Several sliding-surface techniques can be distinguished
based on the choice of method for enforcing the continu-
ity at the common interface. In general, the stator and rotor
meshes at � do not match for all positions attained during the
time integration. Hence, the field at one of both sides has to
be interpolated [7] or mortar-projected [5] on the mesh of the
other side. A third non-matching mesh treatment which is
particularly efficient for rotating devices, is a mortar-element
method with harmonic test functions as proposed in [8]. This
approach is particularly suited in case of a frequency-domain
FE formulation and is favoured here.

The continuity of the magnetic vector potential at the
sliding surface is enforced by weighing the difference be-
tween the magnetic vector potential at � with the spatial
harmonic test functions �
�	��
 �� � �
����	��� where
�
��� � ��
�� 	
���
��
�

�
������
��� and �
 � �.

The resulting constraint equation is

������ ������� � � (10)

where
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The constraints are added to the formulation using a set of
Lagrange multipliers �, resulting in the saddle-point model�
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If a sliding surface is applied at a circular interface with an
equidistant grid, the computational cost of the operators� ��

and ��� can be reduced considerably by weighing the mag-
netic vector potential at a discrete set of points, e.g. at the
FE vertices at � [9]. Then, the discretisation is no longer
conforming, but the integrations in (11) can be rearranged
such that the Fast Fourier Transform (FFT) � instead of the
dense matrices ��� and ���, for each temporal harmonic
separately:

����	�� � Æ	�� (13)

����	�� � �	�� (14)

where�
�	�
�� � � if 	 � � � �
�, i.e. if the pulsation
	 at the rotor side matches the slip pulsation introduced by
the air-gap wave with pulsation � and pole pair number �
 .
The approach with the FFT does not account for the curva-
ture of � and the exact distribution of the magnetic vector



Table 1: Asymptotic order of the computational complexity of the individ-
ual system matrix components.

matrix ��� ��� ��� ��� (FFT)
��� ��� ��� (FFT)

order ������ ������ ������ ���

�
��� ���

�
���

potential between the FE vertices at �. This approximation
is, however, acceptable for many machine models as long as
a sufficient fine discretisation is constructed at �.

V. MOVING-BAND TECHNIQUE

A moving-band ��� is a small circular domain situated in
the air gap of the machine in which a single layer of finite
elements is constructed [4] (Fig. 1). The moving band is
remeshed for every angular position. Hence, the supports
of the spatial FE shape functions in the moving band change
depending on the position. The contributions of the elements
of ��� read, e.g. for � � ��� and � � ���,
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Since the relation between the coordinate systems ��
 �� and
���
 ��� and overlap of the supports of two spatial FE shape
functions ����
 �� and ����

�
 ��� depend on the velocity and
the time, the contributions of elements of��� to the stiffness
matrix result in a full coupling between all harmonics [10].
The combined system of equations is
�
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VI. COMPARISON BETWEEN MOVING-BAND AND
SLIDING-SURFACE APPROACHES

a. Computational complexity

In case of a multi-harmonic formulation, the stator-rotor
coupling gives rise to additional dense matrix parts or to
dense constraint equations, both when using the moving-
band technique or the sliding-surface approach. This is the
main drawback for multi-harmonic formulations compared
to transient formulations. The number of FE vertices at �
scales as

�
���. The computational complexities of the in-

dividual components of the system matrix components are
gathered in Table 1. The dense matrix pats ���, ��� and
��� have the same complexity as the multi-harmonic FE sys-
tem matrices ��� and ��� themselves and, hence, may lead
to a substantial increase of the computational cost of the al-
gorithm. When the FFT-variant of the sliding-surface tech-
nique is applied, the asymptotical complexity of� �� and���

remains below the one of ��� and ���. Hence, the stator-
rotor coupling does not kill the numerical efficiency of multi-
harmonic simulation.

b. Applicability

The moving-band technique also applies to models with
more sophisticated motion patterns. The sliding-surface

technique with harmonic test functions is restricted to cir-
cular interfaces or to integer parts of them. An efficient im-
plementation of the sliding-surface technique moreover re-
quires an equidistant mesh at the interface in the air gap. The
construction of generally applicable preconditioners for the
systems augmented with sliding-surface constraints is cum-
bersome [11].

c. Discretisation error

The moving-band technique yields conforming, variational
formulations, i.e. the FE meshes match in the air gap and
a constrained FE test and trial space is used for the mag-
netic vector potential. For the sliding-surface technique with
FFTs, the discretisation is not matching at � and a saddle-
point system is attained. The additional discretisation error
introduced at � is acceptable for the models considered here.

d. Non-propagated harmonic components

A wave component at pulsation 	 and pole-pair number �

induced by the stator in the air gap, corresponds to a wave
at pulsation � � 	 � �
� and pole-pair number �
 ob-
served by the rotor. A non-propagated harmonic compo-
nents arises when either the component at pulsation 	 is
not considered at the stator or the component at pulsation
� is not considered at the rotor. The question arises which
boundary conditions are inherently applied for these compo-
nents in the air gap. Here, an important difference between
the sliding-surface and the moving-band techniques is ob-
served. In case of the moving-band approach, a wave com-
ponent which is considered at the stator but not at the rotor
vanishes at the boundary between the rotor and the mov-
ing band. Similarly, a component introduced by the rotor
vanishes at the boundary between the stator and the moving
band. Hence, non-propagated components experience ho-
mogeneous Dirichlet conditions at one of the boundaries of
the moving band. As a consequence, the moving-band tech-
nique as presented here is flux-conservative in the air gap.
In case of the presented sliding-surface technique, a stator
harmonic component which is is not propagated to the rotor,
does not vanish at the stator side of �. The non-propagated
components experience a homogeneous Neumann constraint
at the stator and rotor sides of �. This results in a discon-
tinuous magnetic flux at �, even if an exact integration as
in (11) and (11) is applied. The application of homoge-
neous Dirichlet constraints to non-propagated flux compo-
nents requires the addition of additional constraints of the
form ������� � � and ������� � � where ��� selects all
components with wave numbers �	
 �
� for which the cor-
responding slip pulsations � � 	 � �
� are not consid-
ered at ��� and ��� selects all components with wave num-
bers ��
 ��� for which the corresponding excitation pulsa-
tions 	 � � � ��� are not considered at ���.

VII. CAPACITOR MOTOR EXAMPLE

Both techniques are compared for a capacitor motor induc-
tion machine. The motor has a nominal power of 0.75 kW,
a nominal speed of 2760 rpm, a voltage of 230 V, a nomi-
nal current of 5.2 A and a 	
�� of 0.96. The main winding
of the motor is connected directly to a single-phase alter-
nating current supply whereas the auxiliary winding is con-
nected through a capacitor of 19.7 �F. The stator has 24 slots



(a) (b) (c)

(d) (e) (f) (g)

Fig. 2: Magnetic flux plot in the stator at (a) 50 Hz, (b) 750 Hz and (c)
850 Hz; magnetic flux plot in the rotor at (d) 0 Hz, (e) 100 Hz, (f) 800 Hz
and (g) 900 Hz.
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Fig. 3: Spectrum of the current through the main stator winding at no-load.

whereas the rotor has 16 slots. Here, as an example, the
no-load behaviour of the capacitor motor is simulated. The
power supply is assumed to be a perfect sine at 50 Hz. Due to
ferromagnetic saturation, additional harmonic components
are introduced at the stator of which only the 150 Hz and
250 Hz are considered in the frequency-domain approach.
The air-gap field of a single-phase motor is elliptical. Hence,
at no-load, there is besides the 0 Hz component, rotating syn-
chronously to the forward rotating air-gap field, a significant
component at 100 Hz introduced by the backward rotating
air-gap field. Due to the slotting of the stator and rotor, sub-
stantial components at 750 Hz and 850 Hz are detected. The
magnetic flux distributions for the different time-harmonic
components are plotted in Fig. 2. The spectrum of the cur-
rent through the main winding indicates that the slot harmon-
ics at 750 and 850 Hz are substantially more important than
the harmonics introduced by saturation (Fig. 3). A transient
simulation of the start-up of the capacitor motor shows that
a large number of periods have to be stepped through before
reaching steady-state, which is not necessary when using a
multi-harmonic approach as is proposed in this paper. For
the capacitor motor model with 24832 FE nodes, the multi-
harmonic simulation takes 16 min whereas the transient sim-
ulation requires 5 hours.

VIII. CONCLUSIONS

Multi-harmonic FE machine models require the solution of
large systems of equations but may be advantageous over
transient schemes which need to step through a start-up pro-
cess before reaching steady-state.
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Fig. 4: Current through the main stator winding at start-up.
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