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ABSTRACT [I. RELUCTIVITY TENSOR

This paper discusses the use of a complex-valued relyctilit a time-harmonic context, non-linear, anisotropic and-hy

tensor for modelling non-linear, anisotropic and hystaretteretic behaviour can be modelled by a complex-valued re-

materials in a time-harmonic finite element context. It lactivity tensor [1, 2]. This complex-valued tensor renes

shown how these problems can be solved by the Newtation is a generalisation of the complex-valued reluttivi

Raphson method. The method is applied for the simulat&oalar used in [3, 4]. ¥ is considered in its principal coor-

of the magnetic field distribution in a 3-phase transformer.dinate system [5], it is a diagonal tensor whose entrieslequa
Vg andvyg respectively. Hence:

I. TIME-HARMONIC FINITE ELEMENT METHOD ( Frg ) ( Vg O ) < Brg ) ®)
= ~ s 6

. o . H 0 v
The time-harmonic finite element method allows to simulate d « Bra
the steady-state behaviour of devices that are excitedy siyith 1 — Arg&d+ Figgq the field strength [A/m] and

soidally varying currents. The governing equation of a tw ~ ~ . .
dimengiona)(tige—harmonic pro%lem is . B= Bro€ra + Btdéﬂ the Eux density [Vs/rfi. Since thex and
y-components ol andB are phasordi (t) andB(t) describe

0. (v/ DA) — jowA=—J (1) an elliptical locus in space.
where a. Polar Tensor Representation
V= ( Yy Vx ) )
—Vxy  Vxx By representing the tensor entries in a polar form, i.e.
is a matrix containing the entries of the reluctivity ten- Vig = |V d|ejo(rd @)
sorv [Am/Vs], ¢ the electric conductivity [A/Vm],w the ’ o
: ; Vig = |Viglel“e (8)
pulsation frequency [rad/sh the zcomponent of the mag- t t )
netic vector potential [Vs/m] and the zcomponent of the it follows that
applied current sources [A#h A andJ are phasors and are g
represented by complex numbers. The instantaneous value of V= ( Vral O ) < € jgtd > . 9)
the vector potential in time-domain is determined by 0 [Vl 0 e
TN e Rajot The modulijv,4| and|vy| basically determine the anisotropic
Alt) = D{Ae™} . () behaviour, while the argumentgy andaq yield a phase lag
The piecewise continuous approximation of the magnefigtween the field and the flux density. . _
vector potential over the finite element mesh writes To illustrate the meaning of this, a rotating flux density,
N e.g.
A(Xa y) = ZA d)i (Xa y) ) (4) érd = B, (10)
|: =~ -
Btd = _JB 9 (11)

wheren is the number of nodes in the mesh andhe shape _ _ _ _ _ _
function in nodei of the mesh. After applying the Galerkins applied to a linear anisotropic material for which
approach, one finally ends up with a system of algebra¥el| = 4 |Vra|. The field strength locus,

equations: ) ) o H(t) _ D{v@ej‘*‘} ’ (12)
FA) = (KA)+iL)A-T=0, ®) is plotted in Fig. 1. The instantaneous geometric addie

whereA is the solution vectorT the source vector the betweenH(t) andB(t) is plotted in Fig. 2. These figures

residual vectorK the stiffness matrix antl the eddy-current reveal some important properties:

matrix. The non-linearity of the problem is due to the depen-1.y and ‘td' respectively stand for ‘rolling’ and ‘transvee direction’,

dency ofK onA, via the reluctivity tensor. since these directions generally coincide with the priaicipnsor axes.




— 0.5}
[} ; .
= > . .
] - o
< GJE : .
T 0} -90 : : :
o, [ 0 90 180 270 360
aq” B[]
o2
g
-0.5

Figure 2: Geometrical angi&t) betweenrH (t) andB(t), when ap-

plying a circularB-locus to a linear anisotropic material, represented

_ by a complex reluctivity tensor for whichuyg| = 4 |vg|, Org =
e & aig = 0° (solid), oyg = 0q = 30° (dashdotted)a,g = 45° 0q = 30°

-1 -0.5 0 0.5 1 (dashed).
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SinceK depends orv, the entries oK may be complex-

Figure 1: Elliptical H-loci obtained when applying a circul&- valued. By splitting ugK in its real and imaginary part,

locus to a linear anisotropic material, represented by aptexre-
luctivity tensor for which|vy| = 4 |vyg|, arg = Oyg = 0° (solid),

_wre | irim
Urg = Gyg = 30° (dashdotted),g — 45° ayg — 30° (dashed). K=KZ+IKT, (17)

the system of equations (5) becomes
e If a,q = ay, theH-locus is not oblique (Fig. 1);

TN re/ a ; im/ A AT
e In gengraIB andH are not parallel to each other, except F(A) = [K (A)+] (L +K (A))} A-T=0. (18)
whenB aligns with one of the principal axes of th&

locus (Fig. 1); c. Material Data

o If arg = ayg = a, the direction oH depends on the valuey, [1], it is described how's, viM, ¢ andvi™ can be de-
of a (Fig. 1); termined from measurements in the rolling and transverse
o If ayq = ag = 0, the average value @ft) is zero. The direction of grain-qriented silicon stegls, by p_rocessimg
total loss measured signals in frequency domaln. Obviously, the re-
o o o sults depend onﬁthe shape of the excitifpcus.
P, = / HdB = / HXde+/ H,dB, (13) For a circulaiB-locus, these reluctivity tensor components
w=0 =0 =0 are plotted in Fig. 3 as a function of the magnitudeBof
is zero as well (Fig. 2). The measurements have been performed at 50 Hz on a square
grain-oriented silicon steel sheet M111-35N of 80 mm length
and 0.35 mm thickness [6]. For ease of notatigfj," de-
notes botiv/§ andv!l. The solid and dashed lines correspond
to the real and imaginary tensor component respectively.
As a consequence, a complex-valued reluctivity tensowallo The polar equivalent of this figure, describing the depen-
to model the losses caused by simultaneously alternatitig dency ofjvyq|, [Vi|, 0rg andoiyg on |B|max is plotted in Fig. 4.
rotating fluxes, though in a simplified way [1]. |M,q| = |via] Here, the solid and dashed lines correspond to the rollidg an
andag = ayg € [0°,180], the reluctivity tensor may be re-transverse direction respectively. The moduli in this fegur
placed by a complex-valued scalar reluctivity, which medealeveal the obvious result that the rolling direction is easi

o If 0yg = dig €]0°,180°[ or ag # Ay € [0°,180°], the
average value 0d(t) is positive, resulting in a positive
total loss (Fig. 2).

a simplified form of alternating hysteresis [3]. to magnetise than the transverse direction. Moreover,lthe e
liptic H-locus has its principal axes close to the rolling and
b. Cartesian Tensor Representation transverse direction, becausg = aig. The fact that they

) o ) both differ from zero implies that the material is not lossle
By representing the reluctivity tensor components in carte

sian form, i.e.
. II. NEWTON-RAPHSON METHOD

Vrd = VIES + Jvlrrgi] ) (14)

Vig = Vi§ + jv{’g , (15) It is possible to solve (18) numerically by successive sub-
stitution. The Conjugate Orthogonal Conjugate Gradient
(COCG) method can be used for this purpose, since the

v vig O 4 vim 0 (16) complex-valued system is symmetric. Simulation time can be

- 0 v& ] 0 vim significantly decreased by considering derivative infaiora

it follows that:
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i3 e o g r(A)=D(A)A-T. (24)
00 03 0o 0o 12 The (2n x 2n) matrix D has real-valued entries but it is non-
' B[T] ' ' symmetric. Thé2n x 1) vectorsr, A andT have real-valued
entries. Setting the first-order Taylor expansiom td zero,
Figure 3: Reluctivity tensor entriess (top,solid) Vi (top,dashed), r(A+d)~r(A)+J(A)d=0, (25)
vig (bottom,solid) andr{g‘ (bottom,dashed) as a function of the mag-
nitudeB of a circular flux density [1]. with J the Jacobian of, yields a directionr along which a
line search is performed in order to determine a new approx-
800 imation. Elaborating) on the level of a single linear finite
@ ' element yields
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Figure 4: Reluctivity tensor entriesvg| (top,solid), |vg] 1 av'im / p
(top,dashed)q,4 (bottom,solid) andy (bottom,dashed) as a func- Ri(je> = —(b ¢ )0 ( ) ) , (31)
tion of the magnitud® of a circular flux density [1]. 440 dB G
where A is the area of the elementy=y>—vys, ---,
C1=X3—Xp, --- . Due to the non-symmetric structure of

of the reluctivity tensor entries as well, to yield the Nem#o ‘ . ;
Raphson method. However, this requires a special treatm it Jacobian, the Conjugate Gradient (CG) method cannot

The basic idea behind the Newton-Raphson algorithm is 6 used 'to solve (2.5)' The Quasi .Mme|)mal Re(se;dyal (QMR)
set the first order Taylor series expansion of the resitiue method IS appropriate here. .Sett|Mj qndN in (26)

to zero. However, when working with complex variables, g Zero, 1.e. omitting al nor)-llnear Contrlbutpns o tme.
Taylor series expansion is only defined if the residual is Sﬂb'an' gives rise to the Picard or successive substitution

analytic function ofd, i.e. the Cauchy-Riemann condition method discussed earlier.

o 1 o (19) [1l. SIMULATION OF A 3-PHASE TRANSFORMER
OAlE oA L . .
The 3-phase transformer in Fig. 5 is now simulated using the
must be fulfilled. Unfortunately, in non-linear magnetodyzomplex-valued tensor data in Fig. 3. The phase of the cur-
namic problems, this is generally not the case [7]. rents in the coils is-85°, 35° and 155 respectively. For
Consequently, in order to obtain a Newton-RapthFfee different flux density levels, Fig. 6 compares the con-

scheme, one has to derive the Jacobian from the equivai@igence of the proposed Newton-Raphson method (solid)

real representation @f defined by with the convergence of the Picard or successive substitu-
tion method (dashdotted). Obviously, the Newton-Raphson

fre method converges much faster than the Picard method, ex-

r= ( fim > (20) cept if the applied currents are small. This is caused by the
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Figure 5: Flux line distributions obtained with the compledued
time-harmonic anisotropy model. The phase of the curramts i
the coils is—85°, 35° and 153 respectively. The flux density in
the middle limb is approximately alternating with an ampdi¢ of
117T.

Loss density [W/rf]

10 Figure 7: Loss density distribution in the T-joint of the rdie limb.
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