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ABSTRACT

This paper discusses the use of a complex-valued reluctivity
tensor for modelling non-linear, anisotropic and hysteretic
materials in a time-harmonic finite element context. It is
shown how these problems can be solved by the Newton-
Raphson method. The method is applied for the simulation
of the magnetic field distribution in a 3-phase transformer.

I. TIME-HARMONIC FINITE ELEMENT METHOD

The time-harmonic finite element method allows to simulate
the steady-state behaviour of devices that are excited by sinu-
soidally varying currents. The governing equation of a two-
dimensional time-harmonic problem is

∇ · (ν
′
∇Ã)− jσωÃ= −J̃ , (1)

where

ν
′
=

(

νyy −νyx

−νxy νxx

)

(2)

is a matrix containing the entries of the reluctivity ten-
sor ν [Am/Vs], σ the electric conductivity [A/Vm],ω the
pulsation frequency [rad/s],̃A the z-component of the mag-
netic vector potential [Vs/m] and̃J the z-component of the
applied current sources [A/m2]. Ã andJ̃ are phasors and are
represented by complex numbers. The instantaneous value of
the vector potential in time-domain is determined by

~A(t) = ℜ{Ãejωt} . (3)

The piecewise continuous approximation of the magnetic
vector potential over the finite element mesh writes

Ã(x,y) =
n

∑
i=1

Ãiϕi(x,y) , (4)

wheren is the number of nodes in the mesh andϕi the shape
function in nodei of the mesh. After applying the Galerkin
approach, one finally ends up with a system of algebraic
equations:

r̃(Ã) =
(

K(Ã)+ jL
)

Ã− T̃ = 0 , (5)

whereÃ is the solution vector,̃T the source vector,̃r the
residual vector,K the stiffness matrix andL the eddy-current
matrix. The non-linearity of the problem is due to the depen-
dency ofK on Ã, via the reluctivity tensor.

II. RELUCTIVITY TENSOR

In a time-harmonic context, non-linear, anisotropic and hys-
teretic behaviour can be modelled by a complex-valued re-
luctivity tensor [1, 2]. This complex-valued tensor represen-
tation is a generalisation of the complex-valued reluctivity
scalar used in [3, 4]. Ifν is considered in its principal coor-
dinate system [5], it is a diagonal tensor whose entries equal
νrd andνtd respectively1. Hence:

(

H̃rd

H̃td

)

=

(

νrd 0
0 νtd

)(

B̃rd

B̃td

)

, (6)

with ~̃H = H̃rd~erd + H̃td~etd the field strength [A/m] and
~̃B = B̃rd~erd + B̃td~etd the flux density [Vs/m2]. Since thex and

y-components of~̃H and~̃B are phasors,~H(t) and~B(t) describe
an elliptical locus in space.

a. Polar Tensor Representation

By representing the tensor entries in a polar form, i.e.

νrd = |νrd|e
jαrd , (7)

νtd = |νtd|e
jαtd , (8)

it follows that

ν =

(

|νrd| 0
0 |νtd|

)(

ejαrd 0
0 ejαtd

)

. (9)

The moduli|νrd| and|νtd| basically determine the anisotropic
behaviour, while the argumentsαrd andαtd yield a phase lag
between the field and the flux density.

To illustrate the meaning of this, a rotating flux density,
e.g.

B̃rd = B , (10)

B̃td = − jB , (11)

is applied to a linear anisotropic material for which
|νtd| = 4 |νrd|. The field strength locus,

~H(t) = ℜ{ν~̃Bejωt} , (12)

is plotted in Fig. 1. The instantaneous geometric angleδ(t)
between~H(t) and~B(t) is plotted in Fig. 2. These figures
reveal some important properties:

1‘rd’ and ‘td’ respectively stand for ‘rolling’ and ‘transverse direction’,
since these directions generally coincide with the principal tensor axes.
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Figure 1: Elliptical~H-loci obtained when applying a circular~B-
locus to a linear anisotropic material, represented by a complex re-
luctivity tensor for which|νtd| = 4 |νrd|, αrd = αtd = 0◦ (solid),
αrd = αtd = 30◦ (dashdotted),αrd = 45◦ αtd = 30◦ (dashed).

• If αrd = αtd, the~H-locus is not oblique (Fig. 1);

• In general,~B and~H are not parallel to each other, except
when~B aligns with one of the principal axes of the~H-
locus (Fig. 1);

• If αrd = αtd = α, the direction of~H depends on the value
of α (Fig. 1);

• If αrd = αtd = 0, the average value ofδ(t) is zero. The
total loss

Ph =

Z 2π

ωt=0
~Hd~B =

Z 2π

ωt=0
HxdBx +

Z 2π

ωt=0
HydBy (13)

is zero as well (Fig. 2).

• If αrd = αtd ∈ ]0◦,180◦[ or αrd 6= αtd ∈ [0◦,180◦], the
average value ofδ(t) is positive, resulting in a positive
total loss (Fig. 2).

As a consequence, a complex-valued reluctivity tensor allows
to model the losses caused by simultaneously alternating and
rotating fluxes, though in a simplified way [1]. If|νrd|= |νtd|
andαrd = αtd ∈ [0◦,180◦], the reluctivity tensor may be re-
placed by a complex-valued scalar reluctivity, which models
a simplified form of alternating hysteresis [3].

b. Cartesian Tensor Representation

By representing the reluctivity tensor components in carte-
sian form, i.e.

νrd = νre
rd + jνim

rd , (14)

νtd = νre
td + jνim

td , (15)

it follows that:

ν =

(

νre
rd 0
0 νre

td

)

+ j

(

νim
rd 0
0 νim

td

)

. (16)
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Figure 2: Geometrical angleδ(t) between~H(t) and~B(t), when ap-
plying a circular~B-locus to a linear anisotropic material, represented
by a complex reluctivity tensor for which|νtd| = 4 |νrd|, αrd =
αtd = 0◦ (solid),αrd = αtd = 30◦ (dashdotted),αrd = 45◦ αtd = 30◦

(dashed).

SinceK depends onν, the entries ofK may be complex-
valued. By splitting upK in its real and imaginary part,

K = Kre+ jKim , (17)

the system of equations (5) becomes

r̃(Ã) =
[

Kre(Ã)+ j
(

L+ Kim(Ã)
)]

Ã− T̃ = 0 . (18)

c. Material Data

In [1], it is described howνre
rd, νim

rd , νre
td andνim

td can be de-
termined from measurements in the rolling and transverse
direction of grain-oriented silicon steels, by processingthe
measured signals in frequency domain. Obviously, the re-
sults depend on the shape of the exciting~B-locus.

For a circular~B-locus, these reluctivity tensor components
are plotted in Fig. 3 as a function of the magnitude of~B.
The measurements have been performed at 50 Hz on a square
grain-oriented silicon steel sheet M111-35N of 80 mm length
and 0.35 mm thickness [6]. For ease of notation,νre,im

rd de-
notes bothνre

rd andνim
rd . The solid and dashed lines correspond

to the real and imaginary tensor component respectively.
The polar equivalent of this figure, describing the depen-

dency of|νrd|, |νtd|, αrd andαtd on |~B|max, is plotted in Fig. 4.
Here, the solid and dashed lines correspond to the rolling and
transverse direction respectively. The moduli in this figure
reveal the obvious result that the rolling direction is easier
to magnetise than the transverse direction. Moreover, the el-
liptic ~H-locus has its principal axes close to the rolling and
transverse direction, becauseαrd ≈ αtd. The fact that they
both differ from zero implies that the material is not lossless.

II. NEWTON-RAPHSON METHOD

It is possible to solve (18) numerically by successive sub-
stitution. The Conjugate Orthogonal Conjugate Gradient
(COCG) method can be used for this purpose, since the
complex-valuedsystem is symmetric. Simulation time can be
significantly decreased by considering derivative information
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Figure 3: Reluctivity tensor entriesνre
rd (top,solid),νim

rd (top,dashed),
νre

td (bottom,solid) andνim
td (bottom,dashed) as a function of the mag-

nitudeB of a circular flux density [1].
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Figure 4: Reluctivity tensor entries|νrd| (top,solid), |νtd|
(top,dashed),αrd (bottom,solid) andαtd (bottom,dashed) as a func-
tion of the magnitudeB of a circular flux density [1].

of the reluctivity tensor entries as well, to yield the Newton-
Raphson method. However, this requires a special treatment.
The basic idea behind the Newton-Raphson algorithm is to
set the first order Taylor series expansion of the residualr̃(Ã)
to zero. However, when working with complex variables, the
Taylor series expansion is only defined if the residual is an
analytic function ofÃ, i.e. the Cauchy-Riemann condition

∂r̃

∂Ãre
k

=
1
j

∂r̃

∂Ãim
k

(19)

must be fulfilled. Unfortunately, in non-linear magnetody-
namic problems, this is generally not the case [7].

Consequently, in order to obtain a Newton-Raphson
scheme, one has to derive the Jacobian from the equivalent
real representation ofr̃, defined by

r =

(

r̃re

r̃im

)

. (20)

By setting

D =

(

Kre −
(

L+ Kim
)

L+ Kim Kre

)

, (21)

A =

(

Ãre

Ãim

)

, (22)

T =

(

T̃re

T̃im

)

, (23)

it follows that
r(A) = D(A)A−T . (24)

The(2n×2n) matrix D has real-valued entries but it is non-
symmetric. The(2n×1) vectorsr, A andT have real-valued
entries. Setting the first-order Taylor expansion ofr to zero,

r(A+ d)≈ r(A)+ J(A)d = 0 , (25)

with J the Jacobian ofr, yields a directionr along which a
line search is performed in order to determine a new approx-
imation. ElaboratingJ on the level of a single linear finite
element yields

J(e) = D(e) + M(e) + N(e) , (26)

with

M(e) =
2
∆

Q(e)
(

Ãre,(e)

Ãim,(e)

)(

Ãre,(e)

Ãim,(e)

)T

P(e) (27)

N(e) =
2
∆

R(e)
(

−Ãim,(e)

Ãre,(e)

)(

Ãre,(e)

Ãim,(e)

)T

P(e) (28)

P(e)
i j =

1
4∆

(

bi ci
)

(

b j

c j

)

, (29)

Q(e)
i j =

1
4∆

(

bi ci
) dν′re

dB2

(

b j

c j

)

, (30)

R(e)
i j =

1
4∆

(

bi ci
) dν′ im

dB2

(

b j

c j

)

, (31)

where ∆ is the area of the element,b1 = y2−y3, · · · ,
c1 = x3−x2, · · · . Due to the non-symmetric structure of
the Jacobian, the Conjugate Gradient (CG) method cannot
be used to solve (25). The Quasi Minimal Residual (QMR)
method is appropriate here. SettingM(e) and N(e) in (26)
to zero, i.e. omitting all non-linear contributions to the Ja-
cobian, gives rise to the Picard or successive substitution
method discussed earlier.

III. SIMULATION OF A 3-PHASE TRANSFORMER

The 3-phase transformer in Fig. 5 is now simulated using the
complex-valued tensor data in Fig. 3. The phase of the cur-
rents in the coils is−85◦, 35◦ and 155◦ respectively. For
three different flux density levels, Fig. 6 compares the con-
vergence of the proposed Newton-Raphson method (solid)
with the convergence of the Picard or successive substitu-
tion method (dashdotted). Obviously, the Newton-Raphson
method converges much faster than the Picard method, ex-
cept if the applied currents are small. This is caused by the
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Figure 5: Flux line distributions obtained with the complex-valued
time-harmonic anisotropy model. The phase of the currents in
the coils is−85◦, 35◦ and 155◦ respectively. The flux density in
the middle limb is approximately alternating with an amplitude of
1.17 T.
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Figure 6: Norm of the residual as a function of time, for threediffer-
ent flux density levels, when simulating with the Newton-Raphson
method (solid) or the Picard method (dashdotted).

negative derivatives of the reluctivity tensor entries at low
flux densities in Fig. 3 (Rayleigh region).

Fig. 5 shows the flux line distribution. Since the material
model used for this simulation assumes that all~B-loci are
circular, it is expected that the obtained solution may differ
significantly from reality. Data are required for elliptic~B-loci
as well, in order to perform more accurate simulation. The
use of a complex reluctivity tensor allows to visualise the loss
density in each finite element. This is shown in Fig. 7 for the
region around the T-joint. This figure clearly indicates the
increased losses due to rotational magnetisation at the topof
the vertical limb.

CONCLUSIONS

The use of a complex-valued reluctivity tensor allows to
model non-linear, anisotropic and hysteretic materials ina
time-harmonic context. The equations for solving such type
of problems with the Newton-Raphson method are elabo-
rated. The convergence rate for the Newton-Raphson method
is significantly higher than for the successive substitution
method, provided the simulation is performed outside the
Rayleigh region of the material characteristics.
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Figure 7: Loss density distribution in the T-joint of the middle limb.
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