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ABSTRACT to T, F, the set of all vectors anchored at paintTheveloc-
ity field is the set of tangent vectors to all trajectories of the
The expressions of the Lie derivative of differential forms flow at a given instant of time.
the language of vector analysis are introduced. These formuThe notions of length and angle are definediby means
lae allow to describe naturally the electromechanical cowf the metric
pling, and the coupling term appears to be a volume inte- o
gral. A general approach to compute forces is then proposed, g :v,wEeTLEw— g(v,w) = gjv'w €R (2)
which takes that fact into consideration. The method is apr.. . . .
plicable in 2D and in 3D, and with dual formulations. Nu- hich, at each point, associates a number to any pair of
merical evidences of its efficiency are given. chhoéred vectors. An euclidean space is characterised by
1y — Yaig-
jLet ujs now consider a small piece of curvefin As each
I. INTRODUCTION point of the curve follows its own trajectory, the curve de-
) forms, i.e. it changes in length, orientation, curvatute, e
The existence of such a long controversy about the compusat the so-calledectors which are by definition the vectors
tion of electromagnetic (EM) forces is undoubtedly to aseritangent to all curves itf7, are also transformed by the flow,
to the fact that the problem cannot be solved with the toolsgid so is it as well in general for all tensors. All required in
vector analysis. The mathematical analysis of this problggimation to describe that transformation, called corioect
requires indeed to consider a deforming body, and to appyactually contained in the placement map So a tensor

adequately energy conservation rules to it. The corredt-bage|q T becomew, 4 (p; 'T) at timet + dt by the only ef-

ground to perform such operations is differential geomety. i of flow convection. If novil” 4 perar(py ' T), the tensor

(See e.g. [1]), and one needs in particular the Lie derigsq has got a non-zero derivative along the flow. The

tive. For'_[unately, the final results of the ?‘”a'VS'S can be Yerivativeof the tensor fieldt, T [1]is precisely that deriva-
pressed in the language of vector analysis. This gives in sge, along the flow. It is defined by

tion Il a set of formulae, which must be considered as axioms, '

and are used in section Ill to solve the problem of the elec- pepiL T) =T
tromechanical coupling in a continuous medium. It turns out £,T = ljm —+d 72— 3)
that the fundamental representation of the electromechhni dt=0 dt

coupling term has the form of a stress-strain product, whem@ally, if the tensor field” depends also on time, theate-
the Maxwell stress tensor plays by definition the role of thgil derivativeis defined by :

stress. This leads in section IV to a new approach for the

computation of EM forces, which is more clearly backed by orT

the theory. LyT = 5 £yT, (4)

where a notation with the velocity field explicitly mentiahe
Il. LIE DERIVATIVE AND MATERIAL DERIVATIVE has been prefered in order to remind that the material deriva
tive depends on the flow.
Let M be a continuous set of points ang X ), X € M,t € Differential geometry provides the rules to compute the
[a, b] be the trajectory of point X in an euclidean spate Lie derivative and the material derivative of any tensordfiel
The set of trajectories of all points itV defines a flow. We and in particular of thalifferential forms[1, 2], which are

call placementhe map the particular tensor fields we need in this paper. In a three
dimensional space, there exist 4 kinds of differential form
pr: X €M — u(X) € E,te[a,b]. (1) calledp—forms,p = 0,1,2, 3, which all have a specific ex-
’ ’ pression of the material derivative, i.e.
The flow, which is entirely defined by the placement map, is af . of
assumed to be smooth and regular enough to be differentiable Lvf = G,V 5% (5)
and invertible when required. Oh, PYSRP
Thevelocityv at pointz = u.(X) is the vector tangent to (Lsh); = 8; +oF (%; + 55 hi, (6)
the curveu,(X). Itis defined byv = 2w, (X) and belongs i i i i
ot i ob k Ob Ov ; Ov
(Lb)' = +oP S b b o (D)
*This text presents research results of the Belgian progeromin- ot Oz Oz Oz
teruniversity Poles of Attraction initiated by the BelgiState, Prime Minis- op s Op vk
ter's Office, Science Policy Programming. Lyp = F+v 7F+p— (8)



respectively for the)—forms (e.g. a scalar function), thewherel is the identity matrix, resp. for the formulationshn
1-forms (e.g. the magnetic field), thie-forms (e.g. the andinh. Note the use of the dyadic (undotted) vector product
induction field) and th&—forms (e.g. the energy denS|ty)(V w);; = v'w! and the tensor produat: b = a;;b;;.
With obvious definitions, this can be written with more con- |t should be carefully noted that the Maxwell stress ten-
cise notations sorog)y is defined as a true mechanical stress, i.e. its work

r _ g) Is delivered by the mechanical system and received by the

vi= f ) :
electromagnetic system. On the other hand, the EM forces

Lvh = h+(Vv)-h (10)  gefined bypf = div o, are magnetic forces. Their work is

Lsb = b-b-(Vv)+btr(Vv) (11) delivered by the electromagnetic system and received by the

Lvp = p+tr(VV)p (12) mechanical system. This should be clearer after integratin
(16) by part:

wherez denotes théotal derivativeof z(t, z*), obtained by
applying the chain rule, component by component i§ a ) _ £ ) i
vector field. Finally, the material derivative allows to com J, oEM VY Q PV 90 n-op v (19)
pute the time derivative of integrals over moving domains: )
with 052 the boundary of? andn the exterior normal tof2.
d 4O — 4O 13 Moreover, being defined as the EM energy dualef at the
dt Jq pase= 0 Lyp dfd. (13) Jocal level, the Maxwell stress tensor can, as such, directl
play the role of an applied stress in the structural equation
f th t
IIl. MAXWELL STRESS TENSOR orthe system
. f_
In an electromechanical problem, the variation of the EM en- div(o+omm) +p" =0, (20)

ergyfunctionalis not equal to the variation (in the sense Qé(gg hi ier th lina th h the EM f
change) of the EM energy stored in the system. One misgeac | S €asier than coupiing througn the Org8s,
indeed the workVz,; done by the EM forces. Let theM SIce the latter are singular at material interfaces.

energy density? of an electromechanical systefh be a

known function of the induction fieldh. By means of the |vV. THE EGGSHELL APPROACH
formulae (9-13) and the classical chain rule of derivatives

the time derivative of the EM energly writes

v o= /Qﬁvp‘p = /Q (p"l' +tr(Vv) p‘p) i
= /Q (% b+ tr(Vv) p‘p) X
= /Q (%L]: -va) (14 S—1 v

apql 3P\Ij v
+ /Q(b Vv b tr(Vv)(ab b—p)).

The first term at the r.h.s. (14) is tdefinitionof the change
in stored EM energy and the second term is the mechanici

powerW gy, receivedby the EM system.
A similar calculation for th&eM coenergy® gives

Figure 1: Geometry of the c-core and detail of the mesh in

P ap® the airgap.
b = /Q ( o Lvh) (15)
ap® Vv -h Uv) o® Let us consider a systefhiwith a pieceY” that can move in
- JoUon VYT (V) p the aperture of a C-cot¥, not completely represented here.

) ) _ An eggshell shaped regiofi is defined, that encloses the
with here the first term at the r.h.s. the change in stored Ebving piece (Fig. 1) and whose thickness need not be con-
coenergy and the second terV ;. stant. The regiotY is defined suchthaYf UY USUZ = Q;

One can now notice that z,; does not involve the veloc-Z and.S only contain air. The problem is now how to com-
ity field v itself but only its gradien¥/v. TheMaxwell stress pute the EM forces ol. The natural mechanical unknowns

tensoris by definition the dual of the latter : of this problem are the velocities (or equivalently the dis-
placements) at all nodes of the regibn We have seen how-
Worr — v (16) ever that the coupling term (16) involves a velocity field; vi
EM = | OBM VYV tual or not, defined on the whole study dom&nWe must

thus first understand the role played by the velocity fieid
Simple calculations give Q — Y. For the sake of simplicityX andof? are assumed
" " rigid and fixed, i.e. we are only interested in the forcedon

oy = b z;;b _ <8Lb b— pﬁ/) I 17y We have then from (19)

_ op® @ / OEM IVVZ—/ n-ogy -V, (21)
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because = 0 on XU (clamped rigid parts) andf,,, = 0 x 10

in ZU.S (air). This means that the contribution of the exterior 29" 2 compiementary energy |
of Y to the coupling term is completely determined by the —— coenergy
value of the velocity field on its boundaf}y”. Consequently, 2.85 ]

the velocity fieldv is arbitrary in thenterior of Z U S, but it
must connect continuously with on 0Y, which is not zero.
The velocity field blurs thus necessarily out of the moving
region. The idea of the eggshell approach s to set the \gloci

field to zero inZ, confining the non-zero velocity field in the i //“ |

2.8f

Total energy [J]

N
I
[l

shell S, and of course ifY".

Let us now state that the moving piegéis rigid and
shifted by an infinitesimal amoudur. The only region that . T T
deforms isS. The (virtual) velocity field associated with that Number of nodes
deformation, and its gradient are

2.7r

Figure 2: Energyl, coenergy® and complementary energy
v=ydu , Vv=Vyou, (22) [, b-hdQ — @ as a function of the number of nodes. The

. , , . difference between energy and complementary energy is a
wherey is any smooth function whose value is 1 on the inng{easure of the global discretisation error.

surface of the shell and 0 on the outer surface. Using (16),
one can write

0.08|] — eggshell ()
o coenergy (h) L
- - - eggshell (b) ’
* _energy (b)

o
o
N

WEM:—F'él'J.:/O'EMZVVdS, (23)
S

o
o
&

whereF is theresultant forceon Y, and finally, using (22),
one gets

o
o
a

Force along x—axis [N]
o
o
S

FZ*/O’EM~V’}/dS, (24)
S

which is the eggshell formula for the EM resultant force on 001
a rigid body. Only the Maxwell stress tensor of empty space
is here required. The formula applies in 2D and in 3D. It s T 1 s 5 5 s

applies also directly to dual formulations, provided onesus Magnetic flux [Wb] x10°°

(17) for theb—formulation and (18) for th&—formulation.

The eggshell formula can be seen as a generalized varkigtire 3: Comparison of the horizontal forces computed
of Coulomb’s technique to compute nodal EM forces [3, 4§ith the eggshell method and the direct derivation of energy
and of Arkkio’s formula for torque in electrical machine$.[5 (b—formulation) or of coenergyl(—formulation).

At the limit for an infinitely thin shell, one finds back the

classical result that the resultant EM force on a rigid body

is given by the flux of the Maxwell stress tensor through &gveral solutions, with slightly changed positions of thevm
enclosing surface. o ) ing body. The difference between the values computed with
~ The eggshell formula for rigid body movement is testafle b, _formulations and with thd—formulation are due to

in 2D on the C-core problem (Fig. 1). The moving piéce the discretisation error. For variational consistencig hiet-

(3 mm by 4 mm) is inserted in the magnetic cdfeleaving ter not to mix fields from different formulations when evalu-
an airgap of 0.4 mm on both sides. The magnetic horizondghg the Maxwell stress tensor, i.e. for instance, not to mi
force tends to bring the moving piece back in alignment witje 1 field from ah—formulations with theb field from a

the C-core. The problem is solved with dual finite elemept_formulations, although this may seem a good idea from
formulations, so as to check the accuracy of the computad point of view of the individual accuracy of the different

fi(?’['gs and forces, Fig. 2. The constitutive ldw= n(/h|)h fields. Fig. 4 shows indeed that the forces computed with the
wi

Ot i it < B mixed expressiorvgy, = b h — %]I are less accurate.
u(h) = { ot Hiiw it h = hflf” (25)  The eggshell approach gives a certain freedom in the def-
dhtc fix inition of the shell. This is one of its advantages. The shape

with ¢ = 1/psis—d hyis, is representative of a saturable mas actually free and the shell needs not be in contact with the
terial and has the technical advantage that it can be inkerf@oving piece. The effect of the thickness of the shell and
i.e. h can be expressed as a functiorbpfind the (co)energyof the distance between the moving piece and the shell are
functionals can be integrated analytically. The paransetéhown at Fig. 5 and Fig. 6 respectively. One sees that a bet-
were set tQu s, = 7.551073, hy;, = 103.35,a = 1.5107°  ter accuracy is obtained if the shell is not placed directly i
andd = 0.625, (all qguantities in Sl units). contact with the magnetic moving piece, because of the sin-
In Fig. 3, the global forces computed with the eggsh@ularity of EM fields at material corners. Another way to
formula (24) are compared with the forces computed bydgfine the eggshell is to select all finite element§lin- Y’
direct differentiation of the EM (co)energy, using a secoridat have at least one node @l. The~ function is then the
order finite difference scheme for the derivative. A perfegum of the shape functions of the node@df.
match is observed, which shows the validity of the eggshellThis way of defining the eggshell has been used in 3D to
approach. The eggshell formula however, requires only azempute the deformation of a rectangular magnetic frame, of
solution of the system whereas direct differentiation rexgs which by symmetry only one quarter was modelled, Fig. 7.
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Figure 4: Effect of a variational inconsistency.
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Figure 7: Eggshell around a quarter of the rectangular mag-
netic frame, and deformed state.
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V. CONCLUSION

Figure 5: Effect of the thickness of the shell.
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