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ABSTRACT

The expressions of the Lie derivative of differential formsin
the language of vector analysis are introduced. These formu-
lae allow to describe naturally the electromechanical cou-
pling, and the coupling term appears to be a volume inte-
gral. A general approach to compute forces is then proposed,
which takes that fact into consideration. The method is ap-
plicable in 2D and in 3D, and with dual formulations. Nu-
merical evidences of its efficiency are given.

I. INTRODUCTION

The existence of such a long controversy about the computa-
tion of electromagnetic (EM) forces is undoubtedly to ascribe
to the fact that the problem cannot be solved with the tools of
vector analysis. The mathematical analysis of this problem
requires indeed to consider a deforming body, and to apply
adequately energy conservation rules to it. The correct back-
ground to perform such operations is differential geometry
(See e.g. [1]), and one needs in particular the Lie deriva-
tive. Fortunately, the final results of the analysis can be ex-
pressed in the language of vector analysis. This gives in sec-
tion II a set of formulae, which must be considered as axioms,
and are used in section III to solve the problem of the elec-
tromechanical coupling in a continuous medium. It turns out
that the fundamental representation of the electromechanical
coupling term has the form of a stress-strain product, where
the Maxwell stress tensor plays by definition the role of the
stress. This leads in section IV to a new approach for the
computation of EM forces, which is more clearly backed by
the theory.

II. LIE DERIVATIVE AND MATERIAL DERIVATIVE

Let M be a continuous set of points andut(X), X ∈ M, t ∈
[a, b] be the trajectory of point X in an euclidean spaceE.
The set of trajectories of all points inM defines a flow. We
call placementthe map

pt : X ∈ M 7→ ut(X) ∈ E, t ∈ [a, b]. (1)

The flow, which is entirely defined by the placement map, is
assumed to be smooth and regular enough to be differentiable
and invertible when required.

Thevelocityv at pointx = ut(X) is the vector tangent to
the curveut(X). It is defined byv = ∂

∂t
ut(X) and belongs
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to TxE, the set of all vectors anchored at pointx. Theveloc-
ity field is the set of tangent vectors to all trajectories of the
flow at a given instant of time.

The notions of length and angle are defined inE by means
of themetric

g : v,w ∈ TxE 7→ g(v,w) = gijv
iwj ∈ R (2)

which, at each pointx, associates a number to any pair of
anchored vectors. An euclidean space is characterised by
gij = δij .

Let us now consider a small piece of curve inE. As each
point of the curve follows its own trajectory, the curve de-
forms, i.e. it changes in length, orientation, curvature, etc.
But the so-calledvectors, which are by definition the vectors
tangent to all curves inE, are also transformed by the flow,
and so is it as well in general for all tensors. All required in-
formation to describe that transformation, called convection,
is actually contained in the placement mappt. So a tensor
field T becomespt+dt(p

−1
t T ) at timet + dt by the only ef-

fect of flow convection. If nowT 6= pt+dt(p
−1
t T ), the tensor

field has got a non-zero derivative along the flow. TheLie
derivativeof the tensor field£vT [1] is precisely that deriva-
tive along the flow. It is defined by

£vT = lim
dt→0

pt(p
−1

t+dtT ) − T

dt
. (3)

Finally, if the tensor fieldT depends also on time, themate-
rial derivativeis defined by :

LvT =
∂T

∂t
+ £vT, (4)

where a notation with the velocity field explicitly mentioned
has been prefered in order to remind that the material deriva-
tive depends on the flow.

Differential geometry provides the rules to compute the
Lie derivative and the material derivative of any tensor field,
and in particular of thedifferential forms[1, 2], which are
the particular tensor fields we need in this paper. In a three
dimensional space, there exist 4 kinds of differential forms
calledp−forms,p = 0, 1, 2, 3, which all have a specific ex-
pression of the material derivative, i.e.

Lvf =
∂f

∂t
+ v

k ∂f

∂xk
(5)

(Lvh)i =
∂hi

∂t
+ v

k ∂hi

∂xk
+

∂vk

∂xi
hk (6)

(Lvb)i =
∂bi

∂t
+ v

k ∂bi

∂xk
− bk

∂vi

∂xk
+ b

i ∂vk

∂xk
(7)

Lvρ =
∂ρ

∂t
+ v

k ∂ρ

∂xk
+ ρ

∂vk

∂xk
(8)



respectively for the0−forms (e.g. a scalar function), the
1−forms (e.g. the magnetic field), the2−forms (e.g. the
induction field) and the3−forms (e.g. the energy density).
With obvious definitions, this can be written with more con-
cise notations

Lvf = ḟ (9)

Lvh = ḣ + (∇v) · h (10)

Lvb = ḃ − b · (∇v) + b tr(∇v) (11)

Lvρ = ρ̇ + tr(∇v) ρ (12)

whereż denotes thetotal derivativeof z(t, xk), obtained by
applying the chain rule, component by component ifz is a
vector field. Finally, the material derivative allows to com-
pute the time derivative of integrals over moving domains :

d

dt

∫

Ω

ρ dΩ =

∫

Ω

Lvρ dΩ. (13)

III. MAXWELL STRESS TENSOR

In an electromechanical problem, the variation of the EM en-
ergy functionalis not equal to the variation (in the sense of
change) of the EM energy stored in the system. One misses
indeed the workWEM done by the EM forces. Let theEM
energy densityρΨ of an electromechanical systemΩ be a
known function of the induction fieldb. By means of the
formulae (9-13) and the classical chain rule of derivatives,
the time derivative of the EM energyΨ writes

Ψ̇ =

Z

Ω

Lvρ
Ψ =

Z

Ω

“

ρ̇
Ψ + tr(∇v) ρ

Ψ

”

=

Z

Ω

„

∂ρΨ

∂b
· ḃ + tr(∇v) ρ

Ψ

«

=

Z

Ω

„

∂ρΨ

∂b
· Lvb

«

(14)

+

Z

Ω

„

b · ∇v ·
∂ρΨ

∂b
− tr(∇v) (

∂ρΨ

∂b
· b − ρ

Ψ)

«

.

The first term at the r.h.s. (14) is thedefinitionof the change
in stored EM energy and the second term is the mechanical
powerẆEM receivedby the EM system.

A similar calculation for theEM coenergyΦ gives

Φ̇ =

Z

Ω

„

∂ρΦ

∂h
· Lvh

«

(15)

−

Z

Ω

„

∂ρΦ

∂h
· ∇v · h − tr(∇v) ρ

Φ

«

with here the first term at the r.h.s. the change in stored EM
coenergy and the second term−ẆEM .

One can now notice thaṫWEM does not involve the veloc-
ity field v itself but only its gradient∇v. TheMaxwell stress
tensoris by definition the dual of the latter :

ẆEM =

∫

Ω

σEM : ∇v. (16)

Simple calculations give

σEM = b
∂ρΨ

∂b
−

„

∂ρΨ

∂b
· b − ρ

Ψ

«

I (17)

σEM =
∂ρΦ

∂h
h − ρ

Φ
I (18)

whereI is the identity matrix, resp. for the formulations inb
and inh. Note the use of the dyadic (undotted) vector product
(v w)ij = viwj and the tensor producta : b = aijbij .

It should be carefully noted that the Maxwell stress ten-
sorσEM is defined as a true mechanical stress, i.e. its work
is delivered by the mechanical system and received by the
electromagnetic system. On the other hand, the EM forces
defined byρf = div σEM are magnetic forces. Their work is
delivered by the electromagnetic system and received by the
mechanical system. This should be clearer after integrating
(16) by part :

∫

Ω

σEM : ∇v = −

∫

Ω

ρf

EM · v +

∫

∂Ω

n · σEM · v (19)

with ∂Ω the boundary ofΩ andn the exterior normal to∂Ω.
Moreover, being defined as the EM energy dual of∇v at the
local level, the Maxwell stress tensor can, as such, directly
play the role of an applied stress in the structural equations
of the system

div (σ + σEM ) + ρf = 0, (20)

which is easier than coupling through the EM forcesρf

EM ,
since the latter are singular at material interfaces.

IV. THE EGGSHELL APPROACH
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Figure 1: Geometry of the c-core and detail of the mesh in
the airgap.

Let us consider a systemΩ with a pieceY that can move in
the aperture of a C-coreX , not completely represented here.
An eggshell shaped regionS is defined, that encloses the
moving piece (Fig. 1) and whose thickness need not be con-
stant. The regionZ is defined such thatX ∪Y ∪S∪Z = Ω ;
Z andS only contain air. The problem is now how to com-
pute the EM forces onY . The natural mechanical unknowns
of this problem are the velocitiesv (or equivalently the dis-
placements) at all nodes of the regionY . We have seen how-
ever that the coupling term (16) involves a velocity field, vir-
tual or not, defined on the whole study domainΩ. We must
thus first understand the role played by the velocity fieldv in
Ω − Y . For the sake of simplicity,X and∂Ω are assumed
rigid and fixed, i.e. we are only interested in the forces onY .
We have then from (19)

∫

Ω−Y

σEM : ∇v = −

∫

∂Y

n · σEM · v, (21)



becausev = 0 onX∪∂Ω (clamped rigid parts) andρf

EM = 0
in Z∪S (air). This means that the contribution of the exterior
of Y to the coupling term is completely determined by the
value of the velocity field on its boundary∂Y . Consequently,
the velocity fieldv is arbitrary in theinterior of Z ∪ S, but it
must connect continuously withv on∂Y , which is not zero.
The velocity field blurs thus necessarily out of the moving
region. The idea of the eggshell approach is to set the velocity
field to zero inZ, confining the non-zero velocity field in the
shellS, and of course inY .

Let us now state that the moving pieceY is rigid and
shifted by an infinitesimal amountδu. The only region that
deforms isS. The (virtual) velocity field associated with that
deformation, and its gradient are

v = γ δu̇ , ∇v = ∇γ δu̇, (22)

whereγ is any smooth function whose value is 1 on the inner
surface of the shell and 0 on the outer surface. Using (16),
one can write

ẆEM = −F · δu̇ =

∫

S

σEM : ∇v dS, (23)

whereF is theresultant forceon Y , and finally, using (22),
one gets

F = −

∫

S

σEM · ∇γ dS, (24)

which is the eggshell formula for the EM resultant force on
a rigid body. Only the Maxwell stress tensor of empty space
is here required. The formula applies in 2D and in 3D. It
applies also directly to dual formulations, provided one uses
(17) for theb−formulation and (18) for theh−formulation.
The eggshell formula can be seen as a generalized variant
of Coulomb’s technique to compute nodal EM forces [3, 4]
and of Arkkio’s formula for torque in electrical machines [5].
At the limit for an infinitely thin shell, one finds back the
classical result that the resultant EM force on a rigid body
is given by the flux of the Maxwell stress tensor through an
enclosing surface.

The eggshell formula for rigid body movement is tested
in 2D on the C-core problem (Fig. 1). The moving pieceY
(3 mm by 4 mm) is inserted in the magnetic coreX , leaving
an airgap of 0.4 mm on both sides. The magnetic horizontal
force tends to bring the moving piece back in alignment with
the C-core. The problem is solved with dual finite element
formulations, so as to check the accuracy of the computed
fields and forces, Fig. 2. The constitutive lawb = µ(|h|)h
with

µ(h) =

{

a + µfix if h ≤ hfix

a + 1

d h+c
if h > hfix

(25)

with c = 1/µfix−d hfix, is representative of a saturable ma-
terial and has the technical advantage that it can be inverted,
i.e. h can be expressed as a function ofb, and the (co)energy
functionals can be integrated analytically. The parameters
were set toµfix = 7.55 10−3, hfix = 103.35, a = 1.5 10−5

andd = 0.625, (all quantities in SI units).
In Fig. 3, the global forces computed with the eggshell

formula (24) are compared with the forces computed by a
direct differentiation of the EM (co)energy, using a second
order finite difference scheme for the derivative. A perfect
match is observed, which shows the validity of the eggshell
approach. The eggshell formula however, requires only one
solution of the system whereas direct differentiation requires
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Figure 2: EnergyΨ, coenergyΦ and complementary energy
∫

Ω
b · h dΩ − Φ as a function of the number of nodes. The

difference between energy and complementary energy is a
measure of the global discretisation error.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
−6

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Magnetic flux [Wb]

F
or

ce
 a

lo
ng

 x
−

ax
is

 [N
]

eggshell (h)
coenergy (h)
eggshell (b)
energy (b)  

Figure 3: Comparison of the horizontal forces computed
with the eggshell method and the direct derivation of energy
(b−formulation) or of coenergy (h−formulation).

several solutions, with slightly changed positions of the mov-
ing body. The difference between the values computed with
theb−formulations and with theh−formulation are due to
the discretisation error. For variational consistency, itis bet-
ter not to mix fields from different formulations when evalu-
ating the Maxwell stress tensor, i.e. for instance, not to mix
the h field from ah−formulations with theb field from a
b−formulations, although this may seem a good idea from
the point of view of the individual accuracy of the different
fields. Fig. 4 shows indeed that the forces computed with the
mixed expressionσEM = b h− b·h

2
I are less accurate.

The eggshell approach gives a certain freedom in the def-
inition of the shell. This is one of its advantages. The shape
is actually free and the shell needs not be in contact with the
moving piece. The effect of the thickness of the shell and
of the distance between the moving piece and the shell are
shown at Fig. 5 and Fig. 6 respectively. One sees that a bet-
ter accuracy is obtained if the shell is not placed directly in
contact with the magnetic moving piece, because of the sin-
gularity of EM fields at material corners. Another way to
define the eggshell is to select all finite elements inΩ − Y
that have at least one node on∂Y . Theγ function is then the
sum of the shape functions of the nodes of∂Y .

This way of defining the eggshell has been used in 3D to
compute the deformation of a rectangular magnetic frame, of
which by symmetry only one quarter was modelled, Fig. 7.
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Figure 4: Effect of a variational inconsistency.
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Figure 5: Effect of the thickness of the shell.

Let Y be the deforming piece. The weak form of (20) can be
written

∫

Y

σ : ∇v
′ +

∫

Ω

σEM : ∇v
′ +

∫

Y

ρf .v′ = 0 ∀v′ (26)

so as to make explicit use of the coupling term (16). As the
trial functionsv′ are the shape functions of the nodes ofY ,
the integration of the coupling term can be limited toY ∪ S,
where the egsshellS is the set of all finite elements inΩ−Y
that have at least one node on∂Y . In this case, the eggshell
approach allows a very straightforward implementation of an
electromechanical problem. It avoids to compute the trace of
σEM on ∂Y , making benefit of the existing magnetic mesh
outside the deforming piece.
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Figure 6: Effect of not placing the shell in contact with the
ferromagnetic moving piece.
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Figure 7: Eggshell around a quarter of the rectangular mag-
netic frame, and deformed state.

V. CONCLUSION

The Lie derivative of differential forms have been introduced
in the language of vector analysis. They allow to determine
the fundamental form of the electromechanical coupling term
in continuous media. The eggshell approach is based on
that particular form and the classical methods to compute
EM forces are particular cases of it. However, the eggshell
approach is more directly and more clearly linked with the
underlying energy considerations at the continuous and at
the discrete level, for rigid and non-rigid movements. This
makes this approach easier to understand and to implement
in a finite element program.
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